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Abstract

To address the challenge of scarce computational
resources in genomic modeling, we introduce
GERM, a genomic foundation model with strong
compression performance and fast adaptability.
GERM improves upon models like DNABERT-2
by eliminating outliers that hinder low-rank adap-
tation and post-training quantization, enhancing
both efficiency and robustness. We replace the
vanilla attention layer with an outlier-free mecha-
nism inspired by associative memory models. By
removing outliers during both pre-training and
fine-tuning, this approach accelerates adaptation,
reduces computational costs, and enhances quan-
tization robustness within acceptable loss mar-
gins. Additionally, we propose GERM-T, a strat-
egy that employs small-step continual learning
within the outlier-free framework, leveraging orig-
inal checkpoints to avoid retraining from scratch.
Empirically, GERM improves fine-tuning perfor-
mance by 37.98% and quantization by 64.34%
over the baseline model. It also reduces average
kurtosis by 92.14% and maximum infinity norm
by 82.77%. Compared to leading methods, GERM
consistently delivers superior performance, offer-
ing a practical solution for genomic modeling in
resource-constrained settings. Code is available
at https://github.com/MAGICS-LAB/GERM.
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1 Introduction
We introduce a novel model named GERM by utilizing
outlier-free Hopfield layer (Hu et al., 2024a) to replace tra-
ditional attention layer (Vaswani et al., 2017). GERM offers
a quantization-friendly and rapidly adaptable DNA genomic
foundation model (GFM), making it ideal for deployment
and fine-tuning on resource-constrained devices.

Existing GFMs, such as DNABERT-2 (Zhou et al., 2024)
and GenomeOcean (Zhou et al., 2025b), achieve state-of-the-
art performance on various genomics tasks. However, many
GFM users include not only professional computational re-
searchers but also researchers from traditional biomedical
labs, who often operate on resource-constrained platforms
such as mobile phones, edge devices, and IoT systems. The
large size and high computational cost of these models make
them challenging to use in such devices. Also, if researchers
require the model to adapt to new tasks, it should be able to
be fine-tuned on those tasks without demanding substantial
computational resources. Efficient methods such as low-
rank adaptation fine-tuning (e.g., LoRA (Hu et al., 2022))
and post-training quantization (e.g., SmoothQuant (Xiao
et al., 2023)) help reduce training and inference costs for
GFMs. However, directly applying these techniques to orig-
inal models without modification leads to huge performance
drops. This results from outlier values in the model’s atten-
tion mechanisms, inherited from pretrained models (Clark
et al., 2019; Kovaleva et al., 2019). Prior studies (Hu et al.,
2024a; Bondarenko et al., 2024; Clark et al., 2019) show that
transformer-based models often direct attention toward less
useful tokens, referred to as outliers. These outliers cause
inefficiencies that reduce the overall model performance.
Additional studies (Wu et al., 2024c; Huang et al., 2024;
Hu et al., 2025) reveal that low-rank adaptation worsens
the outlier issue. Outliers from both pretrained models and
low-rank adaptation fine-tuning processes distort outputs
and lower accuracy.

To address inefficiencies caused by outliers in transformer-
based genomic foundation models, GERM draws inspiration
from associative memory models (Hu et al., 2024a;b; 2023;
Xu et al., 2024; Wu et al., 2024a;b; Ramsauer et al., 2021).
We replace the standard transformer attention mechanisms
with an outlier-free attention layer proposed by Hu et al.
(2024a), which detects and removes outliers occurring dur-
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Figure 1: Structural Comparison of DNABERT-2 and GERM Models. This diagram illustrates the differences in processing pipelines
between DNABERT-2 and GERM. Both DNABERT-2 and GERM use the SciencePiece tokenizer with BPE for tokenization. Following
that, both models employ ALiBi for positional encoding in the embedding layer. However, as shown in (a), DNABERT-2’s transformer
architecture outputs the outliers. We propose replacing the vanilla Softmaxwith an outlier-free layer. In (b), the output of the attention
mechanism removes outliers from the original output.

ing pretraining and low-rank adaptation (LoRA).

This outlier mitigation in GERM results in a “triple win”
for genomic foundation models: faster low-rank adapta-
tion, reduced computational demands, and more reliable
post-training quantization. On resource-constrained de-
vices, incorporating fine-tuning techniques such as QLoRA
(Dettmers et al., 2024a) and quantization methods like Om-
niQuant (Shao et al., 2024) enables efficient fine-tuning and
inference with minimal performance degradation. This sig-
nificantly enhances its accessibility and usability, promoting
broader deployment without specialized hardware.

Additionally, addressing the limitations of (Hu et al., 2024a),
particularly its resource-heavy training from scratch, we in-
troduce GERM-T. GERM-T adds an outlier-free layer to
existing GFM and uses small-step continual training to effi-
ciently achieve near-optimal performance.

Contributions. We propose GERM, an outlier-free GFM
with enhanced quantization robustness and rapid low-rank
adaptation. Our contributions are as follows:

• We propose an outlier-free model structure to address
and mitigate outliers introduced by pretrained models
and low-rank adaptation. This approach enables rapid
low-rank adaptation and robust post-training quantization,
significantly enhancing the overall performance of the
quantized model and model finetuning. Notably, our
model fine-tunes DNABERT in just 5 minutes on a single
NVIDIA GeForce RTX 2080 Ti GPU.

• Methodologically, we replace the standard transformer at-
tention mechanism in the GFM with an outlier-free layer

to enhance the model’s ability to handle and mitigate
outliers during pretraining and fine-tuning. Additionally,
we introduce a continual learning strategy as a compro-
mise version to avoid retraining the model from scratch.
This strategy ensures suboptimal performance in terms of
model quantization robustness and low-rank adaptation.

• Experimentally, We evaluate the performance and effi-
ciency of our method using the existing DNABERT-2
model (Zhou et al., 2024) structure. Additionally, we
benchmark it against the state-of-the-art low-rank adapta-
tion methods and post-training quantization techniques.
Compared to the standard framework, the proposed frame-
work achieves average performance improvements of
37.98% in finetuning and 64.34% in quantization, re-
spectively. Additionally, GERM shows a reduction of
92.14% in the average kurtosis and 82.77% in the maxi-
mum infinity norm on average.

Related Work

Quantization. Considering the quantized object, exiting
foundation models (FMs) quantization can be classified into
two fields: weight-only quantization and weight-activation
quantization. For weight-only quantization, prior stud-
ies focus on converting weights to low-bit values. For
instance, GPTQ (Frantar et al., 2023) uses block-wise re-
construction for 3/4-bit quantization. SpQR (Dettmers
et al., 2024b), OWQ (Lee et al., 2024), and AWQ (Lin
et al., 2024) emphasize the significance of weights tied to
higher-magnitude activations. Therefore, SpQR and OWQ
employ mixed-precision quantization to safeguard vital
weights, while AWQ opts for channel-wise scaling to avoid
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mixed-precision’s hardware inefficiency. QLoRA (Dettmers
et al., 2024a), LoftQ (Li et al., 2023) and QUIP (Chee
et al., 2023) restore the capabilities of the quantized
model through parameter-efficient fine-tuning. For weight-
activation quantization, prior studies compress both
weights and activations. SmoothQuant (Xiao et al., 2023),
LLM.int8() (Dettmers et al., 2022), and Outlier Suppres-
sion (Wei et al., 2022) achieve W8A8 quantization by man-
aging activation outliers. LLM.int8() uses mixed-precision
decomposition, while the other two employ channel-wise
scaling. Furthermore, Outlier Suppression+ (Wei et al.,
2023) adds channel-wise shifting to drive W6A6 quanti-
zation. In comparison to other quantization approaches,
including prior works (Wei et al., 2023; Xiao et al., 2023)
that address the outlier issue during quantization, the outlier-
free layer in GERM is more effective at managing outliers
within the model’s attention mechanism. It provides GERM
with a unique advantage in terms of quantization robustness.

Outlier Values in Quantization. Numerous studies (Hu
et al., 2024a; Ma et al., 2024; Heo et al., 2024; Puccetti et al.,
2022; Kovaleva et al., 2021; Bondarenko et al., 2021; Luo
et al., 2021) observe outlier values in the transformer-based
language models such as BERT (Devlin et al., 2019) and
early GPT (Radford et al., 2019) models. Since the advent
of FMs (Zhou et al., 2024; 2025a; Zhang et al., 2022; Brown
et al., 2020) root in the GPT and BERT, recent studies by
Xiao et al. (2023); Ahmadian et al. (2023); Dettmers et al.
(2022) tackle the existence of outlier values in FMs. Ac-
cording to them, these outliers exhibit a large magnitude
of values at the shared dimensions of hidden states across
tokens. More recently, Bondarenko et al. (2024); Sun et al.
(2024); Hu et al. (2024a) explain that the outliers attribute to
the vertical pattern in the attention mechanism (Xiao et al.,
2024; Kovaleva et al., 2019), influencing the performance of
FMs. In particular, Sun et al. (2024) claim a different type
of outlier existing in the hidden states of specific tokens.
However, most of these studies concentrate on language and
vision models, leaving the impact of outliers on genomic
foundation models largely unexplored. Additionally, meth-
ods like Hu et al. (2024a) require training from scratch to
eliminate outliers, which is computationally expensive.

Genomic Foundation Model. The majority of genomic
foundation models (GFMs) use transformers to model
sequence dependencies, similar to BERT (Devlin et al.,
2019) and GPT (Brown et al., 2020) in NLP. Specifically,
DNABERT (Ji et al., 2021) and DNABERT-2 (Zhou et al.,
2024) leverage transformers for DNA sequence analysis by
employing masked language modeling and fine-tuning for
biological tasks. In addition, Nucleotide Transformer (Dalla-
Torre et al., 2024) excels at molecular phenotype predic-
tion and variant prioritization, while HyenaDNA (Nguyen
et al., 2024b) is optimized for modeling long-range genomic

dependencies. Furthermore, GenomeOcean (Zhou et al.,
2025b) provides an efficient 4-billion-parameter genome
foundation model for diverse, context-aware DNA sequence
generation. However, these models demand significant
computational resources and lack robustness to quantiza-
tion, rendering them unsuitable for deployment on resource-
constrained devices. Specifically, GenomeOcean utilizes 64
NVIDIA A100 80G GPUs over a span of 14 days for train-
ing. This limits accessibility for research labs with limited
computational capacity. More recently, Evo (Nguyen et al.,
2024a), a generative genomic model, integrating Trans-
former and Hyena operator to efficiently capture long-range
dependencies in genomic sequences, achieving a context
window of 131k nucleotides. Furthermore, Evo uniquely
bridges bridges the DNA-RNA-protein central dogma via
cross-modal inference without task-specific supervision.

2 GERM

This section introduces the proposed method, which com-
prises the outlier-free architecture, small-step continual
learning, and the DNA genomic foundation model (GFM).
The outlier-free architecture is designed to mitigate chal-
lenges posed by outliers during the model fine-tuning pro-
cess. Meanwhile, the small-step continual learning tech-
nique extends the training process using smaller learning
steps after the initial training, aiming to address and mitigate
the outliers present in the original model checkpoints.

In our study, we develop the GFM framework to train DNA
sequence-based genomic foundation models that employ
Transformer-based architectures such as DNABERT (Ji
et al., 2021) and Nucleotide Transformer (Dalla-Torre et al.,
2024). These models use DNA tokenization and Trans-
former attention mechanisms, making them well-suited for
integrating techniques like LoRA and the outlier-free mech-
anisms proposed in our approach. Alternatively, models like
HyenaDNA (Nguyen et al., 2024b) and Caduceus (Schiff
et al., 2024) utilize different architectures, such as convolu-
tional layers or the Mamba architecture. While these models
introduce novel features, they are not currently the most
widely adopted in genomic modeling and require further
research. Therefore, we adopt DNABERT-2 as the baseline
in this paper, as it best represents the Transformer-based
DNA GFMs central to our study. The proposed outlier-free
architecture of GERM is illustrated in Figure 1.

Outliers Challenge in Transformer Architecture. Pre-
vious studies (Clark et al., 2019; Kovaleva et al., 2019)
demonstrate that structural elements, including delimiters
and sentence boundaries, attract unexpectedly high atten-
tion weights in BERT’s attention mechanism. Conse-
quently, these tokens dominate the attention mechanism,
overshadowing more informative tokens. Further anal-
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ysis by Kobayashi et al. (2020) show that tokens with
smaller value vector magnitudes paradoxically tend to ob-
tain greater attention weights. These phenomena indicate
that transformer-based models may focus on less relevant
information, leading to inefficient processing. Studies by
Hu et al. (2024a); Bondarenko et al. (2024) highlight the
underlying cause of the outlier challenge in transformer-
based models, proposing that transformers do not require
updates when the attention inputs are sufficiently informa-
tive. However, the normalization nature of the Softmax
function forces non-zero attention weights even for irrele-
vant tokens, creating numerical instability. Such outliers
distort gradient updates and hinder model performance. Ad-
ditionally, this issue increases computational and memory
demands during training and results in significant perfor-
mance degradation after model quantization. Consequently,
implementing a strategy to address outliers during both the
pretraining and fine-tuning stages is crucial. Numerous
studies address the outlier problem across different model
stages, including pre-training (Hu et al., 2024a), fine-tuning
(Hu et al., 2025), and inference (Bondarenko et al., 2024;
Xiao et al., 2023). In our study, we extend the work of Hu
et al. (2024a) by utilizing the memory-associated retrieval
dynamics function Softmax1. This function is defined as

Softmax1(S) :=
exp(S)

1 +
∑L

i=1 exp(Si)
,

where S is the input to the activation function. This ap-
proach addresses outlier problems in GFMs. Additionally,
we provide a theoretical analysis of the expressive guarantee
of low-rank adaptation for transformer-based GFMs with
Softmax1 in Appendix A.

Small-step Continual Learning. The outlier removal
technique introduced in OutEffHop (Hu et al., 2024a) is
highly effective in reducing the impact of outliers during
model pretraining. However, a major limitation of this ap-
proach is the need to retrain the model from scratch, which is
a significant challenge for large-scale models like GFMs due
to the extensive time and computational resources required.
To address this issue, we suggest a small-step continual
learning approach as a compromise to the existing GERM
structure, called GERM-T. It involves resuming training
with an outlier-free model structure after the initial training
phase to address and mitigate outliers in the original model
checkpoints. This approach aims to lower the computational
cost and time needed for retraining while still optimizing
performance. Although this small-step continual learning
technique may not be as effective as full retraining, it of-
fers a more efficient and cost-effective solution for outlier
removal in GFMs. For users with limited computational
resources who cannot train a model from scratch and rely
on 8-bit or 6-bit quantization during inference, GERM-T
offers a viable compromise strategy.

DNA Genomic Foundation Model. We implement a sim-
ple yet effective design for the DNA genomic foundation
model (GFM) following DNABERT-2 (Zhou et al., 2024).
Initially, we employ SentencePiece (Kudo & Richardson,
2018) with Byte Pair Encoding (BPE) (Sennrich et al., 2016),
a subword tokenization method, to process DNA sequences.
SentencePiece is particularly effective for handling the large
number of unique tokens present in DNA without assuming
any pre-tokenization, such as k-mer segmentation (Chor
et al., 2009). SentencePiece with BPE is used in natural
language processing for word segmentation and learns a
fixed-sized vocabulary of variable-length tokens based on
character co-occurrence frequencies. Due to the significant
difference between natural language and DNA sequences,
the vocabulary sizes used in the NLP domain (Zhang et al.,
2022; Radford et al., 2019; Kenton & Toutanova, 2019) are
not suitable for DNA sequences. In our study, we set vocab-
ulary size to 4096, as it best balances model performance
with computational efficiency among candidates.

We then adopt the BERT architecture (Kenton & Toutanova,
2019) to train our GFM on DNA sequences, with several
modifications to better accommodate the unique characteris-
tics of the DNA data. Standard positional encoding methods,
such as Rotary Positional Encoding (Su et al., 2024) and
Sinusoidal Positional Encoding (Vaswani et al., 2017), face
limitations when applied to sequences longer than those en-
countered during training due to their inherent input length
restrictions. To address these limitations, we employ the
Attention with Linear Biases (ALiBi) method (Press et al.,
2022), as it is more robust to variations in sequence length
and can handle longer sequences compared to traditional po-
sitional encoding methods. Instead of adding positional em-
beddings to the input, ALiBi introduces linear biases into the
attention mechanism, allowing the model to learn positional
information inherently from the input sequence. Specifically,
let qi ∈ Rd represent the query vector for the i-th token in a
sequence of length L, and K ∈ RL×d denote the key matrix
for all tokens. The attention score for query qi is computed
as: Softmax(qiK

⊤ +m × [−(i − 1), . . . ,−1, 0,−1, . . . ,
−(L − 1 − i)]), where m is a fixed scalar. ALiBi uses a
geometric sequence of different m values for each attention
head, allowing model to learn positional information from
the input sequence itself. By replacing learned positional
embeddings with ALiBi, GERM can process arbitrarily long
sequences during fine-tuning and inference, despite being
pre-trained on relatively shorter sequences.

3 Experimental Studies
In this section, we perform a series of experiments to demon-
strate the effectiveness of our proposed method. In par-
ticular, we compare the performance of our method with
DNABERT-2 detailed in (Zhou et al., 2024).

4



Fast and Low-Cost Genomic Foundation Models via Outlier Removal

Table 1: Comparing GERM and GERM-T with DNABERT-2 in a Post-Training Quantisation (PTQ) setting. We perform
experiments on GERM with baseline models using four quantization methods (Traditional W8A8, SmoothQuant, Outlier Suppression,
OmniQuant) across three quantization configurations (Weight-8bit-Activation-8bit (W8A8), Weight-6bit-Activation-6bit (W6A6), and
Weight-4bit-Activation-4bit (W4A4)). The evaluation metrics include the Matthews Correlation Coefficient (MCC), the difference in
MCC (Delta MCC) compared to the official DNABERT-2 checkpoint, the average kurtosis, and the maximum infinity norm ∥x∥∞ for
outlier values at FP16. The best results are highlighted in bold, while the second-best results are underlined. In most configurations,
GERM demonstrates superior fine-tuning performance compared to DNABERT-2.

Model #Bits
Quantization

Method MCC (↑) Delta MCC
(↓)

Avg Performance
Drop (↓) Avg. Kurtosis (↓)

Max inf.
norm (↓)

Official 16W/16A - 66.11 - - 39.68 53.61

D
N

A
B

E
R

T-
2

16W/16A - 59.11 7.00 -

270.90 61.64

8W/8A 33.60±0.41 32.51 43.81%
8W/8A

SmoothQuant
36.51±0.02 45.37 38.63%

6W/6A 20.74±0.04 45.37 66.18%
4W/4A -1.03±0.06 67.06 101.24%
8W/8A Outlier 25.26±0.02 40.85 57.60%
6W/6A 27.84±0.28 38.27 52.71%
8W/8A

OmniQuant
49.92±0.05 16.19 15.76%

6W/6A 48.47±0.14 17.64 18.61%
4W/4A 2.94±0.19 63.17 94.78%

G
E

R
M

16W/16A - 59.73 6.38 -

21.29 10.62

8W/8A 57.30±0.08 8.81 3.77%
8W/8A

SmoothQuant
56.65±0.15 9.46 4.82%

6W/6A 56.48±0.07 9.63 5.45%
4W/4A 20.05±0.00 46.06 69.44%
8W/8A Outlier 45.87±0.08 20.24 25.23%
6W/6A 40.57±0.56 25.54 36.27%
8W/8A

OmniQuant
55.99±0.09 10.12 5.95%

6W/6A 55.70±0.03 10.41 6.41%
4W/4A 49.42±0.00 16.69 17.17%

G
E

R
M

-T

16W/16A - 59.30 6.81 -

251.40 28.49

8W/8A 38.38±0.15 27.73 35.27%
8W/8A

SmoothQuant
57.52±0.00 8.59 3.01%

6W/6A 30.34±0.04 35.77 48.83%
4W/4A 0.22±0.00 65.89 99.63%
8W/8A Outlier 42.57±0.05 23.54 28.31%
6W/6A 46.02±0.06 20.06 22.34%
8W/8A

OmniQuant
56.80±0.12 9.31 4.21%

6W/6A 55.41±0.00 10.71 6.57%
4W/4A 3.86±0.00 62.25 93.49%

Models. Following Zhou et al. (2024), we validate our
strategy with DNABERT-2 model. we adopt the DNABERT-
2 model of size 117 million parameters1. We pretrain this
model with the masked language modeling (MLM) tech-
nique, following the original DNABERT-2 (Zhou et al.,
2024). Each model trained from scratch undergoes a total
of 200K training steps. For models utilizing small-step con-
tinual learning, we initially train the model from scratch

1https://huggingface.co/zhihan1996

using the DNABERT-2 architecture, followed by continual
learning with the outlier-free structure for the remaining
steps. In our experiment, we use the 40K continual learning
steps model as the representative example of GERM-T to
compare against DNABERT-2 and GERM.

Datasets. We utilize 27 datasets spanning 7 tasks and 4
species, as outlined in (Zhou et al., 2024). As shown in
Appendix B.3, most downstream tasks in GFMs are clas-
sification tasks. Consequently, the datasets are designed
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Table 2: Comparing GERM and GERM-T with DNABERT-2 in a Low-Rank Adaptation Setting. We perform experiments on
GERM with baseline models across three Low-Rank Adaptation methods (LoRA, QLoRA, LoftQ). The evaluation metrics include the
Matthews Correlation Coefficient (MCC), the Delta MCC performance difference relative to the official DNABERT-2 checkpoint, the
average kurtosis, and the maximum infinity norm ∥x∥∞ for outlier values. Additionally, we measure the average performance drop after
low-rank adaptation to evaluate the efficiency of GERM in this setting. The best results are highlighted in bold, while the second-best
results are underlined. In most configurations, GERM demonstrates superior fine-tuning performance compared to DNABERT-2. The
GERM demonstrates an average performance improvement of 37.98% compared to the DNABERT-2 model.

Models
Low-Rank

Adaptation Method MCC (↑) Delta MCC
different (↓)

Avg Performance
Drop (↓) Avg. kurtosis(↓)

Max inf.
norm(↓)

D
N

A
B

E
R

T-
2 Full 59.11 7.00 - 270.90 61.41

LoRA 50.91±1.67 15.2 13.87% - 219.20
QLoRA 50.65±0.13 15.46 14.31% 292.85 53.91
LoftQ 50.76±0.06 15.31 14.05% 299.18 54.18

G
E

R
M

Full 59.73 6.38 - 21.29 10.62
LoRA 57.27±0.70 8.84 4.12% - 19.41

QLoRA 53.16±0.21 12.95 10.99% 34.29 27.27
LoftQ 53.11±0.08 13.00 11.08% 33.02 27.41

G
E

R
M

-T Full 59.30 6.81 - 251.40 28.49
LoRA 55.60±0.28 10.51 6.23% - 140.86

QLoRA 51.05±0.07 15.06 13.90% 287.95 53.92
LoftQ 51.20±0.13 14.91 13.65% 286.16 53.35

for genome sequence classification problems, with input
lengths ranging from 70 to 1000.

Evaluation Metrics. To evaluate the performance of out-
liers in our strategy, we report the maximum infinity norm
∥x∥∞ of the activation tensors x across all transformer
layers as a metric for detecting outliers. Additionally, we
present the average kurtosis of x, calculated only from the
output tensors from the Feed-Forward Network (FFN) layer
and Layer Normalization. These two components are known
to contain outliers, as confirmed by our experiments and
prior studies (Hu et al., 2024a; Bondarenko et al., 2024;
2021). Both metrics have demonstrated a strong correla-
tion with model quantizability (i.e., robustness to outliers)
(Bondarenko et al., 2021; Chmiel et al., 2020). For pre-
quantization performance, we also report the FP16 (16-
bit floating-point) Matthews correlation coefficient (MCC)
score to assess model’s downstream classification ability.

3.1 Post-Training Quantization (PTQ)

To assess the efficiency of our method for Post-Training
Quantization (PTQ), we replace the standard attention layer
in DNABERT-2 (Zhou et al., 2024) with the Softmax1 ac-
tivation function. We utilize the pre-trained checkpoints
of these three models and fine-tune them at full rank fol-
lowing the procedure described in (Zhou et al., 2024). In
this experiment, we evaluate the models on the test datasets
using FP16 precision and apply PTQ to measure perfor-
mance degradation due to quantization. Each evaluation is

conducted three times with different random seeds, and we
report the average and standard deviation for each metric.

Baselines. To evaluate the performance of our method
against the official DNABERT-2 model, we also full fine-
tune the official pretrained DNABERT-2 model 1 as a base-
line on a downstream classification task to demonstrate
the absolute performance of those three models. We fur-
ther compare the performance of these three models on the
same downstream classification task using FP16 precision
and four PTQ methods: Traditional W8A8 (Weights-8bit,
Activations-8bit) as outlined in Bondarenko et al. (2024),
SmoothQuant (Xiao et al., 2023), Outlier Suppression (Wei
et al., 2022), and OmniQuant (Shao et al., 2024). With
the exception of the W8A8 method, we evaluate and com-
pare the quantization performance of SmoothQuant, Out-
lier Suppression, and OmniQuant at W8A8 (Weights-8bit,
Activations-8bit) and W6A6 precision levels. Addition-
ally, we present the quantization performance for W4A4
using OmniQuant and SmoothQuant. We use the same hy-
perparameters specified in their respective studies. This
approach guarantees that our evaluations are conducted un-
der standardized conditions, enabling precise comparisons
and assessments of each quantization method.

Results. Referring to Table 1, it is clear that the GERM
surpasses the DNABERT-2 in scenarios involving W4A4,
W6A6 and W8A8 post-training quantization using state-of-
the-art PTQ methods. Specifically, when both weights and
activations are quantized to 8 bits (W8A8), GERM exhibits
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a minimal average performance decline of only 4.82% on
SmoothQuant. Additionally, the proposed strategy remains
effective as the quantization bit size decreases. For exam-
ple, when models are quantized to W4A4, GERM exhibits
a minimal average performance decline of only 17.17% on
OmniQuant, compared to an 94.78% drop in the DNABERT-
2. This demonstrates that GERM outperforms the vanilla
structure by enhancing the robustness of model quantiza-
tion and improving performance across outlier-free methods
like SmoothQuant and Outlier Suppression. Additionally,
GERM-T exhibits strong quantization performance at both
8-bit and 6-bit levels, with a minimal performance drop,
even smaller than that of GERM. The only exception is
with W4A4 quantization, where GERM-T experiences a
notable performance drop due to larger outliers in GERM-T
compared to the GERM. The outlier metrics indicate the
improvement in average kurtosis is minimal, though a sub-
stantial reduction in the maximum infinity norm compared
to the DNABERT-2. Outlier metrics show that GERM re-
duces the average kurtosis by ∼92.14% and the maximum
infinity norm by ∼82.77% across 27 datasets. Additionally,
GERM-T achieves a reduction of approximately 7.20% in
average kurtosis and 53.78% in the maximum infinity norm
across the same datasets.

3.2 Low-Rank Adaptation

Fine-tuning models for downstream tasks is often compu-
tationally expensive. To enhance the efficiency of fine-
tuning with fewer parameters, various parameter-efficient
fine-tuning (PEFT) methods, such as Low-Rank Adaptation
(LoRA), are commonly used. To assess the efficiency of
our method for fine-tuning tasks with LoRA, we evaluate
our framework on LoRA methods. We use the pretrained
checkpoints of the three models and fine-tune them using
multiple LoRA approaches following a similar procedure
as described in Section 3.1. In this experiment, we evaluate
the models on the test datasets using full-rank fine-tuning
to compare the performance drop across various LoRA ap-
proaches. Each evaluation is conducted three times with
different random seeds, and we report the average and stan-
dard deviation for each metric.

LoRA Methods. We compare our method with the vanilla
version across three different LoRA methods: LoRA (Hu
et al., 2022), QLoRA (Dettmers et al., 2024a), and LoftQ (Li
et al., 2023). For the Full Fine-Tuning method, we fine-tune
the model at full rank using mixed-precision FP16 training.
For the LoRA method, following (Hu et al., 2022), we fine-
tune the model with low-rank adaptations using a rank of
128 and an alpha value of 256. For the QLoRA and LoftQ
methods, we fine-tune the model with quantized low-rank
adaptations, maintaining the same rank and alpha values as
in LoRA. Both QLoRA and LoftQ utilize 4-bit quantization

methods as described in (Dettmers et al., 2024a).

Results. In Table 2, our results highlight the effective-
ness of GERM in low-rank adaptation. In most configura-
tions, GERM significantly enhances fine-tuning performance.
Specifically, GERM achieves an average performance im-
provement of 37.98% in low-rank adaptation compared to
DNABERT-2 model. Similarly, GERM-T shows an aver-
age performance improvement of 20.01% over the same
baseline. These results demonstrate that both GERM and
GERM-T can greatly enhance low-rank adaptation for the
model. When considering outlier metrics, we observe that
LoRA exhibits significantly larger outlier values compared
to full fine-tuning. Also, in most configurations, the out-
lier values in LoRA are much higher than those in QLoRA
and LoftQ. One potential reason is that QLoRA and LoftQ
utilize quantization to stabilize parameter updates and com-
press model representations, which helps minimize the am-
plification of extreme outlier values. Furthermore, GERM
demonstrates a substantial reduction in outlier values com-
pared to DNABERT-2, and GERM-T also experiences a
significant decrease in the maximum infinity norm, though
the reduction in average kurtosis remains limited.

Table 3: Quantization Robustness Performance Comparison
with Different Continual Learning Steps. We evaluate the quan-
tization robustness of different models, using SmoothQuant at
16-bit, 8-bit, and 6-bit quantization levels. The evaluation metric is
the Matthews Correlation Coefficient (MCC) with the average per-
formance drop following quantization also noted. The best results
are highlighted in bold, and the second-best results are underlined.

Method #Bits MCC (↑)
Avg Performance

Drop (↓)

DNABERT-2 16W/16A 59.11 -
GERM 16W/16A 59.73 -
Out20k 16W/16A 59.21 -
GERM-T 16W/16A 59.30 -
Out100k 16W/16A 60.56 -

DNABERT-2 8W/8A 36.51 38.23%
GERM 8W/8A 56.78 4.93%
Out20k 8W/8A 54.75 7.53%
GERM-T 8W/8A 57.52 3.00%
Out100k 8W/8A 58.77 2.96%

DNABERT-2 6W/6A 20.74 64.91%
GERM 6W/6A 56.48 5.44%
Out20k 6W/6A 27.61 53.36%
GERM-T 6W/6A 28.32 52.24%
Out100k 6W/6A 30.44 49.74%

3.3 Additional Experiments

In this section, we conduct additional experiments to eval-
uate the effectiveness of our method in various scenarios.
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Figure 2: Comparison of Performance in Resource-Constrained Computing Environments. Comparison of three models on the
quantization and fine-tuning task. All models were trained on the same computing infrastructure (Nvidia GeForce RTX 2080 Ti 11GB)
for fair comparison. The training time represents the average time per epoch, with OmniQuant used as quantization example in this figure.

We conduct ablation studies to investigate the impact of
different continual learning steps, the influence of adaptor
rank. Also, we conduct a case study on model deployment
and fine-tuning using a single 2080 Ti to evaluate model
latency and fine-tuning speed per epoch.

Impact of Different Continual Learning Steps. To eval-
uate our proposed method’s performance across various
continual learning steps, we conduct experiments on three
different step sizes: 20K, 40K, and 100K. We train the
models for a total of 200K steps, employing a combina-
tion of vanilla and outlier-free pretraining as outlined in
(Zhou et al., 2024) and (Hu et al., 2024a). To assess perfor-
mance degradation after quantization using SmoothQuant,
we perform full-rank fine-tuning of the models using the
training datasets. Additionally, we assess the performance
decline across models using three iterations of LoRA-based
fine-tuning technology. We use the "Outxxk" prefix to in-
dicate the number of continual learning steps applied to
the outlier-free structure. For instance, Out100k represents
a model trained with 100K continual learning steps using
the outlier-free structure. This notation helps illustrate how
different levels of continual learning impact the model’s
performance.In most configurations, GERM outperforms
DNABERT-2 in both quantization robustness and low-rank
adaptation. The only exception is in the 8-bit quantization
scenario, where the Out100k and GERM-T models exhibit
better performance and a smaller average performance drop
than GERM. Overall, GERM-T achieves better near-optimal
performance across all continual learning model settings.
The results, as shown in Tables 3 and 4, demonstrate that
our method outperforms the vanilla approach across all test
sets. Also, we observe that GERM-T exhibits the most op-
timal performance drop during quantization and low-rank
adaptation compared to other continual learning steps. The

larger performance drop observed in the model using 100K
steps of continual learning, compared to GERM-T. It is at-
tributed to the superior performance achieved through full
fine-tuning. These results indicate that employing 40K con-
tinual learning steps in GERM-T is optimal for enhancing
model performance in our approach.

Performance of GERM on Alternative Trans-
former-based Models. To assess the performance
of our proposed method on alternative transformer-based
GFMs, we conducted experiments on Nucleotide Trans-
former (NT) (Dalla-Torre et al., 2024), a significant
genomic foundation model in this domain. The results, as
shown in Tables 19 and 20, demonstrate that our method
outperforms the vanilla approach across all test sets. GERM
achieves an average performance improvement of 52.01%
in low-rank adaptation and 67.69% in PTQ experiments.
We also conduct experiments on the NT-2.5B model to
demonstrate the scalability of GERM on larger-scale GFMs,
as shown in Appendix D.7.

Performance of GERM with Alternative Outlier Removal
Methods. To evaluate the performance of our proposed
method against existing outlier removal techniques, we com-
pare GERM with approaches such as clipped softmax and
gated attention (Bondarenko et al., 2024). As shown in Ap-
pendix D.8, GERM achieves a performance improvement of
2.59% in 4-bit and 1.99% in 8-bit quantization.

Performance of GERM with Different Adaptor Rank.
In our experiments, we evaluate the performance of our
proposed method under the influence of adapter rank. All
results are presented in Appendix D.1.
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Table 4: Low-Rank Adaptation Performance Comparison
with Different Continual Learning Steps. We evaluate the low-
rank adaptation performance (LoRA, QLoRA, LoftQ) for various
models with different continual learning steps. The evaluation
metric is the Matthews Correlation Coefficient (MCC), and the
average performance drop after adaptation is also shown. The
best results are highlighted in bold, and the second-best results are
underlined.

Method
Fine-Tuning

Method MCC (↑)
Avg Performance

Drop (↓)

DNABERT-2 Full 59.11 -
GERM Full 59.73 -
Out20k Full 59.21 -
GERM-T Full 59.30 -
Out100k Full 60.56 -

DNABERT-2 LoRA 50.91 13.87%
GERM LoRA 56.78 4.94%
Out20k LoRA 54.75 7.53%
GERM-T LoRA 55.60 6.24%
Out100k LoRA 56.61 6.52%

DNABERT-2 QLoRA 50.65 14.31%
GERM QLoRA 53.16 11.00%
Out20k QLoRA 50.61 14.52%
GERM-T QLoRA 51.05 13.91%
Out100k QLoRA 51.24 15.39%

DNABERT-2 LoftQ 50.76 14.13%
GERM LoftQ 53.11 11.08%
Out20k LoftQ 50.94 13.97%
GERM-T LoftQ 51.20 13.66%
Out100k LoftQ 50.77 16.17%

3.4 Case Study: Performance in
Resource-Constrained Computing Environments.

Case Study 1: Performance in Single 2080-Ti GPU Com-
puting Environments. To demonstrate GERM’s capabil-
ity in resource-constrained environments, we conduct per-
formance tests on a single NVIDIA GeForce RTX 2080 Ti
11GB GPU, where GERM requires only 5 minutes to fine-
tune, demonstrating its practicality and efficiency. We com-
pare GERM’s performance with the DNABERT-2 model on
the same downstream classification task using OmniQuant.
Consistent hyperparameters from their respective studies
are applied across all models. Additionally, we provide the
per-epoch training time and inference time for the LoRA,
QLoRA, and LoftQ fine-tuning methods. The results, as
shown in Figure 2, show that both GERM and GERM-T
achieve shorter full-rank fine-tuning times per epoch com-
pared to DNABERT-2. Additionally, the model quantization
latency for both GERM and GERM-T is lower than that of
DNABERT-2, while delivering superior quantization perfor-
mance. These observations indicate that GERM offers faster
adaptation and requires fewer computational resources for

users during both the inference and fine-tuning processes.

Case Study 2: Performance in CPU-Only Computing En-
vironments. To demonstrate GERM’s capability in CPU-
only computing environments, we perform performance
tests on CPU-only devices. We compare GERM’s per-epoch
training and inference times for the LoRA and QLoRA fine-
tuning methods. The results, presented in Appendix D.4,
indicate that both GERM and GERM-T achieve shorter fine-
tuning times per epoch compared to DNABERT-2, with the
only exception being QLoRA when deployed, where the
time is slightly longer.

4 Discussion and Conclusion
We introduce GERM, a versatile and accessible GFM de-
signed to function on limited computational resources. By
replacing the vanilla attention layer with an outlier-free
layer, we eliminate outliers during both model pretraining
and fine-tuning. This approach ensures robust quantization
and enables effective low-rank adaptation. In addition to
presenting a novel architecture that enhances DNABERT
by mitigating outliers, GERM incorporates a compromise
strategy with continual learning, eliminating the need for ex-
tensive retraining. Empirically, GERM achieves an average
reduction of average kurtosis by ∼92.14% and the maximum
infinity norm by ∼82.77% across 27 datasets. Additionally,
GERM enhances model quantization robustness by decreas-
ing the average quantization performance drop by 64.34%
and the average low-rank adaptation performance drop by
37.98%. For the compromise model GERM-T, quantization
robustness is improved by reducing the average quantiza-
tion performance drop by 31.42% and the average low-rank
adaptation performance drop by 20.01%.

Limitations and Future Work. While successful in many
settings, our proposed GERM-T still faces challenges in
eliminating outliers in GFM, leading to significant perfor-
mance drops during 4-bit quantization and low-rank adap-
tation methods such as QLoRA and LoftQ. In future work,
we aim to develop strategies that efficiently remove outliers
without necessitating retraining from scratch. We provide a
more detailed discussion of the limitations of GERM-T in
Appendix E.

Impact Statement
We believe this methodology presents an opportunity to
strengthen the core of foundation models, including large
language models, by improving robustness through quanti-
zation and enabling faster low-rank adaptation. However,
this approach may also amplify biases in the training data,
potentially leading to unfair or discriminatory outcomes for
underrepresented groups.
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A Theoretical Analysis

In this section, we provide the expressive guarantee of Low-Rank Adaption for transformer model with Softmax1. Moreover,
we identify the conditions for the existence of low-rank adapters. We summarize our main findings in the following informal
theorem.

Theorem A.1 (Informal). Let f0 be the frozen model and f be the target model. Under certain non-singularity assumption
and LoRA-rank conditions, their exist low-rank adapters such that the adopted model f exactly equal to f .

The formal version is stated in Theorem A.2. Then we provide a detailed illustration. We start with the definition of the
target model f and the adopted model f .

Definition A.1 (Definition of target model f and adopted model f ). For any input X ∈ RD×N , where D denotes the
dimension of token embedding and N denotes the number of tokens. We consider a H-heads transformers TFθ, consist of
L-Transformer blocks and an output layer with parameter θ =

(
(Wh

Ol,W
h
V l,W

h
Kl,W

h
Ql)

H
h=1,W1l,W2l, b1l, b2l)

L
l=1,Wo

)
.

Specifically, we formulate it as

Hidden layer: Attn(Zl−1) =

H∑
h=1

W
h

OlW
h

V l · Zl−1 · Softmax1(Z
⊤
l−1W

h⊤
KlW

h

QlZl−1),

Zl =W2l · ReLU(W1l ·Attn(Zl−1) + b1l1
⊤
N ) + b2l1

⊤
N

OutputLayer : TFθ(X) = Softmax1(WoZL),

where we define Z0 := X . Here, Wh
1l,W

h
V l,W

h
Kl,W

h
Ql ∈ RD×D are weight matrices in l-th attention layer. Further,

W1l,W2l ∈ RD×D are weight matrices and b1l, b2l are the bias vectors in the l-th feedforward layer. Then we define the
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target model f and the adopted model f are

f := TFθT , θT =
(
(W

h

Ol,W
h

V l,W
h

Kl,W
h

Ql)
H
h=1,W 1l,W 2l, b1l, b2l)

L
l=1,W o

)
f := TFθA , θA = ((Wh

Ol +∆Wh
Ol,W

h
V l +∆Wh

V l,W
h
Kl +∆Wh

kl,W
h
Ql +∆Wh

Ql)
H
h=1,

W1l +∆W1l,W2l +∆W2l, b̂1l, b̂2l)
L
l=1,Wo +∆Wo).

Moreover, we define the best low-rank approximation for matrix W .

Definition A.2 (Best Low-rank Approximation for W ). For any matrix W ∈ RD×D, the singular value decomposition
(SVD) of W is expressed as W = UDV ⊤. Above U, V ∈ RD×D are orthonormal matrices and D ∈ RD×D is a diagonal
matrix. Let the singular value of W are denoted as σ1(W ) ≥ . . . ≥ σD(W ) ≥ 0. When d > D,let σd(W ) = 0. For any
rank r > 0, we define

LRAr(W ) :=

r∑
i=1

σi(W )uiv
⊤
i ,

where ui, v
⊤
i are the i-th column of U, V , respectively.

According to Eckart & Young (1936) and Mirsky (1960), LRAr(W ) are the best rank-r approximation in the Frobenius
norm or the 2-norm of W . To present our results, we now introduce non-singularity assumption based on Definition A.2.

Assumption A.1 (Non-Singularity). For a fixed R ∈ [D], the weight matrices of both the target model, the frozen model
and the following matrices are non-singular, for all r ∈ [R]. Specifically,

Wh⊤
Kl W

h
Ql + LRAr(W

h⊤
KlW

h

Ql −Wh⊤
Kl W

h
Ql), for all h ∈ [H] and l = 1,

Wh⊤
Kl W

h
Ql + LRAr(W

−1⊤
2,l−1W

⊤
2,l−1W

h⊤
KlW

h

QlW 2,l−1W
−1
2,l−1 −Wh⊤

Kl W
h
Ql), for all h ∈ [H], l ∈ [L]\{1},

Wh
OlW

h
V l + LRAr(W

−1
1l W 1lW

h

OlW
h

V l −Wh
OlW

h
V l), for all h ∈ [H] and l = 1,

Wh
OlW

h
V l + LRAr(W

−1
1l W 1lW

h

OlW
h

V lW 2,l−1W
−1
2,l−1 −Wh

OlW
h
V l), for all h ∈ [H] and l ∈ [L]\{1},

WoW2L + LRAr(W oW 2L −WoW2L),

are non-singular, where LRA denotes the rank-r approximation follows Definition A.2.

Under a non-singularity assumption (Assumption A.1), we apply another helper lemma from Zeng & Lee (2024) to construct
the weight matrices in Theorem A.2.

Lemma A.1 (Exactly represent target model, Lemma 7 of Zeng & Lee (2024)). Define error matrix E := W −
∏L

l=1 Wl,
and denote its rank by RE = rank(E). For a given LoRA-rank R ∈ [D], assume that all the weight matrices of the frozen
model (Wl)

L
l=1, and

∏L
l=1 Wl + LRAr(E) are non-singular for all r ≤ R(L− 1). Then, the approximation error

min
∆Wl:rank(∆Wl)≤R

∥∥∥∥∥
L∏

l=1

(Wl +∆Wl)−W

∥∥∥∥∥
2

= σRL+1

(
W −

L∏
l=1

Wl

)
︸ ︷︷ ︸

Error matrix E

and the optimal solution to the matrix approximation problem satisfies
∏L

l=1 (Wl +∆Wl) =
∏L

l=1 Wl + LRARL∧RE
(E).

Therefore, when R ≥
⌈
RE

L

⌉
, we have

∏L
l=1 (Wl +∆Wl) = W , implying f ≡ f .

With Assumption A.1 and Lemma A.1, we show that for any input X ∈ RD×D, their exist a adapted model f capable of
approximating target model f exactly, i.e, f(X) = f(X).

Theorem A.2 (Express capability of transformers). Suppose LoRA-rank R ∈ [D]. Let Assumption A.1 hold. Define the
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rank-based functionality gap Gi to i-th Outlier-Efficient Hopfield block (i ∈ [L]) or output layer (i = L+ 1) as

Gi =


maxh(rank(W

h⊤
KiW

h

Qi −Wh⊤
Ki W

h
Qi)) ∨maxh(rank(W 1iW

h

OiW
h

V i −W1iW
h
OiW

h
V i)), i = 1,

maxh(rank(W
⊤
2,i−1W

h⊤
KiW

h

QiW 2,i−1 −W⊤
2,i−1W

h⊤
Ki W

h
QiW2,i−1),

∨maxh(rank(W 1iW
h

OiW
h

V iW 2,i−1 −W1iW
h
OiW

h
V iW2,i−1)), 2 ≤ i ≤ L,

rank(W oW 2L −WoW2L), i = L+ 1.

If R ≥ maxi∈[L+1]⌈Gi

2 ⌉, then there exists low-rank adapters with rank lower than R

((∆Wh
Kl,∆Wh

Ql,∆Wh
V l,∆Wh

Ol)
H
h=1)

L
l=1,∆W2L,∆Wo with other low-rank adapters set to O, and updated bias

vectors (̂b1l, b̂2l)Ll=1, such that for any input X ∈ RD×N , the adapted model f exactly approximates target model f , i.e.,
f(X) = f(X).

Proof. We build our proof on Zeng & Lee (2024).

First, we ensure that, for each Outlier-Efficient Hopfield block, the output from the first feedforward layer in the target
model matches that in the adapted model. Then, we select an appropriate output layer weight matrix to complete the proof.

We define H l ∈ RD×N and Zl ∈ RD×N as the intermediate and final outputs of the l-th transformer block in the target
model f , respectively. For any l ∈ [L], they are formulated as

H l := ReLU(W 1l(

H∑
h=1

W
h

OlW
h

V l · Zl−1 · Softmax1(Z
⊤
l−1W

h⊤
KlW

h

QlZl−1)) + b1l1
⊤
N ),

Zl :=W 2lH l + b2l1
⊤
N .

Correspondingly, we introduce Ĥl and Ẑl to denote the intermediate output of the first feedforward layer and the final output
of the l-th Outlier-Efficient Hopfield block for the adapted model f ,

Ĥl = ReLU(W1l(

H∑
h=1

(Wh
Ol +∆Wh

Ol)(W
h
V l +∆Wh

V l) · Ẑl−1 (A.1)

· Softmax1(Ẑ
⊤
l−1(W

h
Kl +∆Wh

Kl)
⊤(Wh

Ql +∆Wh
Ql)Ẑl1) + b̂1l1

⊤
N ),

Ẑl =W2lĤl + b̂2l1
⊤
N , (A.2)

for any l ∈ [L]. Note that Z0 = Ẑ0 = X . Next, we inductively construct the adapter weight matrices
((∆Wh

Ol,∆Wh
V l,∆Wh

Kl,∆Wh
Ql)

H
h=1, b̂1l, b̂2l)

L
l=1 such that Ĥl = H l for all l ∈ [L]. We then select the low-rank adapters

for W2L and the Wo to approximate the output of the target model. For unmentioned low-rank adapters, we set them as O.

When l = 1. To achieve Ĥl = H l for all X , the following conditions must be satisfied:

• Bias Vector: b̂1l = b1l,

• Query and Key: (Wh
Kl +∆Wh

Kl)
⊤(Wh

Ql +∆Wh
Ql) = W

h⊤
KlW

h

Ql,

• Value and First Feedforward Layer: (Wh
Ol +∆Wh

Ol)(W
h
V l +∆Wh

V l) = W−1
1l W 1lW

h

OlW
h

V l,

It is simple to check that we only need to set b̂1l = b1l to, and select rank-R or lower matrices ∆Wh
Kl,∆Wh

Ql,∆Wh
Ol,∆Wh

V l

as suggested by Lemma A.1. This ensures Ĥl = H l for l = 1.

When l > 1. For the cases l = 2, . . . , L, we assume the induction hypothesis holds for l − 1, which is Ĥl−1 = H l−1.
We let b̂2,l−1 = W2,l−1W

−1

2,l−1b2,l−1, then it holds,

Ẑl−1 = W2,l−1W
−1

2,l−1Zl−1. (A.3)

Substituting (A.3) into (A.1) and (A.2), the necessary conditions become:
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• Bias Vector: b̂1l = b1l,

• Query and Key: (Wh
Kl +∆Wh

Kl)
⊤(Wh

Ql +∆Wh
Ql) = W−1⊤

2,l−1W
⊤
2,l−1W

h⊤
KlW

h

QlW 2,l−1W
−1
2,l−1,

• Value and Output Projection: (Wh
Ol +∆Wh

Ol)(W
h
V l +∆Wh

V l) = W−1
1l W 1lW

h

OlW
h

V lW 2,l−1W
−1
2,l−1.

By setting b̂1l = b1l and adjusting ∆Wh
Kl,∆Wh

Ql,∆Wh
Ol,∆Wh

V l for all h ∈ [H] based on Lemma A.1, we satisfy all three
conditions above, thereby obtaining Ĥl = H l for l ∈ [L]\{1}.

Output Layer Analysis. By applying the induction method, we have established Ĥl = H l for all l ∈ [L]. We only need to
select appropriate weight matrices to ensure that f(X) = f(X) for all X ∈ X . The final output of the target model f with
input X can be written as

f(X) = Softmax1(W oZL) = Softmax1(W o(W 2LHL + b2L1
⊤
N )).

Similarly, the final output of the adapted model f with input X can be written as

f(X) = Softmax1((Wo +∆Wo)ẐL)

= Softmax1((Wo +∆Wo)((W2L∆W2L)ĤL + b̂2L1
⊤
N )).

To achieve f(X) = f(X), we select ∆W2L and ∆Wo based on Lemma A.1, and let b̂2L = (Wo +∆Wo)
−1W ob2L, where

Wo +∆Wo is invertible as shown in the proof of Lemma A.1. Combining above, we complete the proof.

B Experimental Setup

B.1 Computational Resource

We perform all experiments using 2 NVIDIA A100 GPU with 80GB of memory and a 24-core Intel(R) Xeon(R) Gold
6338 CPU operating at 2.00GHz. Our code is developed in PyTorch and utilizes the Hugging Face Transformer Library for
experimental execution.

B.2 Hyperparameters

We present the hyperparameters used in the fine-tuning stage for each model. We use AdamW (Loshchilov & Hutter, 2019)
as the optimizer. Most of the other hyperparameters remain the same across all models and datasets, including a batch size
of 32, a warmup step of 50, and a weight decay of 0.01. A learning rate of 3e−5 is used for all models during fine-tuning.
For low-rank adaptation, we use a learning rate of 1e−4, with a LoRA rank of 8 and LoRA alpha set to 16. For each task, we
use different training steps as shown in Table 5. During pre-training, the model is trained for 200,000 steps with a batch size
of 1024 and a maximum sequence length of 512, using the AdamW optimizer with β1 = 0.9, β2 = 0.98, and ϵ = 1e−6.
The pre-training stage takes approximately 4 days using 2 NVIDIA A100 80G GPUs.

Table 5: The number of training steps. We present the number of training steps we use in our experiments. In the task of
Transcription Factor Prediction on the Mouse genome, we train the model for 1000 steps on each dataset.

EMP TF-M CVC TF-H PD-tata PD-o CPD-tata CPD-o SSP

Epochs 3 1k 8 3 10 4 10 4 5

B.3 Downstream Tasks Across Different Models

We analyze the downstream tasks of various genomic foundation models (GFMs), specifically comparing DNABERT-2
(Zhou et al., 2024), HyenaDNA (Nguyen et al., 2024b), and Nucleotide Transformer (Dalla-Torre et al., 2024). As shown in
Table 6, all of these GFMs utilize classification tasks as their primary downstream applications. Additionally, we analyze
related GenBench datasets (Liu et al., 2025) and find that, uniquely, GenBench includes some regression downstream tasks,
providing a broader evaluation spectrum.
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Table 6: Comparison of Models (Benchmarks) and Their Tasks.

Model Tasks Classification-Only

DNABERT-2 GUE (28 Classification tasks) Yes
Nucleotide Transformer Nucleotide Transformer Benchmark (18 Classification tasks) Yes
HyenaDNA GenBench (Classification-Only) + Nucleotide Transformer Benchmark Yes
GenBench Classification + Regression (e.g., Drosophila Enhancer Activity Prediction) No

C Formula of Average Kurtosis

As shown in Bondarenko et al. (2024); Hu et al. (2024a), average kurtosis is a significant metric for measuring outliers.
Kurtosis is a statistical measure that quantifies the "tailedness" of a distribution relative to a normal distribution. The formula
for kurtosis is:

K =
n
∑n

i=1(xi − x)4

(
∑n

i=1(xi − x)2)
2 ,

where xi represents the data points, x is the mean, and n is the number of data points. As a result, when a distribution has
higher kurtosis, it indicates that the data distribution has heavier tails. In other words, there are more outlier values present in
the distribution. The GERM reduces kurtosis by evenly distributing attention across informative tokens, rather than focusing
excessively on specific outlier tokens (e.g., delimiters or eos markers).

D Additional Numerical Experiments

D.1 Influence of Adaptor Rank

We perform an in-depth analysis to assess the performance of our proposed method across different ranks when implementing
Low-rank Adaptation (LoRA), comparing it to the standard vanilla approach. We compare the model performance with
different rank value of LoRA and keep the alpha value double of the rank value. The results, as shown in Table 7, demonstrate
that our method outperforms the vanilla approach across all tested ranks. We observe that a rank of 8 provides optimal
performance compared to the vanilla method. The lack of further performance improvements with higher ranks is because a
higher rank in LoRA usually introduces more trainable parameters into the model. This leads to a significant performance
improvement over the vanilla structure, thereby narrowing the performance gap with GERM.
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Table 7: Comparison of Different Ranks Using LoRA. We conduct experiments to evaluate how different ranks affect the performance
of LoRA. The evaluation metric used is Matthews Correlation Coefficient (MCC). We measure the average performance decline following
low-rank adaptation, with best results highlighted in bold.

Method
Fine-Tuning

Method Rank MCC

DNABERT-2 Full N/A 59.11
GERM Full N/A 59.73
GERM-T Full N/A 59.30

DNABERT-2 LoRA 16 55.71
GERM LoRA 16 58.91
GERM-T LoRA 16 57.41

DNABERT-2 LoRA 8 52.87
GERM LoRA 8 57.27
GERM-T LoRA 8 55.60

DNABERT-2 LoRA 4 51.02
GERM LoRA 4 55.64
GERM-T LoRA 4 52.07

D.2 All Results in Low-rank Adaptation

In this section, we present a comprehensive evaluation of various models under different low-rank adaptation (LoRA)
strategies. The experiments compare DNABERT-2, GERM-T, and GERM models across multiple biological prediction tasks,
including epigenetic marks prediction, promoter detection, and transcription factor prediction in both human and mouse
datasets. The adaptation methods assessed include Full Fine-tuning, LoRA, QLoRA, and LoftQ.
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Table 8: Performance Comparison of Full Fine-tuning with DNABERT-2. This table shows the performance of all
models on the full fine-tuning task.

Epigenetic Marks Prediction

Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 75.03 33.07 48.63 33.67 31.63 24.31
GERM-T 75.02 47.31 51.32 34.53 27.72 23.19
GERM 75.58 50.36 53.13 33.36 36.02 23.97

Epigenetic Marks Prediction Promoter Detection

Model H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2 60.88 49.87 77.67 26.87 82.45 90.29 58.20
GERM-T 59.61 52.63 80.20 45.37 80.82 90.24 59.27
GERM 59.80 55.08 81.25 48.36 79.40 90.51 59.75

Transcription Factor Prediction (Human) Core Promoter Detection

Model 0 1 2 3 4 all notata tata

DNABERT-2 66.51 70.10 57.43 39.67 71.35 66.61 65.34 71.98
GERM-T 68.17 68.45 62.85 50.62 72.25 48.96 65.09 75.90
GERM 67.29 70.88 58.21 51.75 72.21 51.91 63.07 70.40

Transcription Factor Prediction (Mouse) Virus Splice

Model 0 1 2 3 4 Covid Reconstruct

DNABERT-2 45.61 80.20 78.05 72.70 41.94 66.17 68.85
GERM-T 40.90 57.18 71.25 70.25 36.88 66.69 77.60
GERM 41.98 59.19 65.53 72.58 38.68 66.02 76.59
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Table 9: Performance Comparison of LoRA with DNABERT-2. This table shows the performance of all models on the
low-rank adaptation (LoRA) task.

Epigenetic Marks Prediction

Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 65.93 35.97 44.19 38.93 28.30 21.86
GERM-T 69.98 42.59 48.34 41.15 29.11 24.45
GERM 70.61 37.12 48.57 35.46 30.20 25.62

Epigenetic Marks Prediction Promoter Detection

Model H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2 55.69 45.65 74.15 33.52 81.84 89.72 53.64
GERM-T 58.25 49.96 78.08 36.18 84.19 91.71 60.18
GERM 57.99 47.54 78.37 35.55 82.97 90.35 58.51

Transcription Factor Prediction (Human) Core Promoter Detection

Model 0 1 2 3 4 all notata tata

DNABERT-2 61.68 69.70 38.80 42.17 58.94 66.61 65.34 65.34
GERM-T 65.21 69.47 57.42 46.86 66.18 48.96 65.09 75.90
GERM 66.77 71.03 55.95 48.65 69.63 51.91 63.07 70.40

Transcription Factor Prediction (Mouse) Virus Splice

Model 0 1 2 3 4 Covid Reconstruct

DNABERT-2 45.61 80.20 78.05 72.70 41.94 13.15 56.16
GERM-T 40.90 57.18 71.25 70.25 36.88 23.36 60.85
GERM 41.98 59.19 65.53 72.58 38.68 41.37 64.62
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Table 10: Performance Comparison of QLoRA with DNABERT-2. This table shows the performance of all models on
the QLoRa task.

Epigenetic Marks Prediction

Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 57.67 32.22 38.84 29.17 28.74 20.47
GERM-T 59.52 33.03 35.84 28.85 28.02 21.53
GERM 60.55 37.30 39.52 33.22 26.61 21.29

Epigenetic Marks Prediction Promoter Detection

Model H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2 53.11 41.69 67.02 28.92 81.27 88.66 54.98
GERM-T 54.22 44.76 72.82 29.68 81.15 87.58 55.07
GERM 56.80 47.41 74.76 30.85 82.13 90.02 56.97

Transcription Factor Prediction (Human) Core Promoter Detection

Model 0 1 2 3 4 all notata tata

DNABERT-2 62.62 66.97 49.46 41.86 63.86 60.41 64.26 63.24
GERM-T 62.00 67.31 50.84 41.57 65.87 60.48 65.14 55.80
GERM 62.10 69.00 53.28 44.80 65.71 61.15 64.73 57.27

Transcription Factor Prediction (Mouse) Virus Splice

Model 0 1 2 3 4 Covid Reconstruct

DNABERT-2 36.56 75.32 70.55 50.47 35.41 6.44 49.99
GERM-T 35.63 72.05 70.82 48.77 34.46 14.81 51.87
GERM 37.01 76.59 72.95 52.34 33.48 16.72 59.12

Across all adaptation methods, GERM consistently outperforms DNABERT-2 and GERM-T in various prediction tasks,
particularly excelling in epigenetic marks prediction and promoter detection. This consistent superiority suggests that
GERM possesses a higher degree of flexibility and effectiveness in low-rank adaptation scenarios. While DNABERT-2
and GERM-T show competitive performance in certain tasks and adaptation methods, GERM’s robust performance across
diverse biological datasets and adaptation strategies underscores its potential as a more reliable tool for complex genomic
predictions.
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Table 11: Performance Comparison of LoftQ with DNABERT-2. This table shows the performance of all models on the
LoftQ task.

Epigenetic Marks Prediction

Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 58.92 32.36 36.59 28.84 27.19 18.46
GERM-T 60.03 32.03 37.23 28.78 27.94 20.16
GERM 62.17 36.79 39.45 33.12 27.37 21.84

Epigenetic Marks Prediction Promoter Detection

Model H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2 60.88 46.21 67.86 29.63 80.44 88.71 56.79
GERM-T 59.61 52.63 80.20 30.57 80.10 88.78 58.52
GERM 59.80 55.08 81.25 31.23 82.00 89.81 59.86

Transcription Factor Prediction (Human) Core Promoter Detection

Model 0 1 2 3 4 all notata tata

DNABERT-2 63.30 67.63 50.39 43.41 64.09 59.80 64.24 56.93
GERM-T 63.35 66.70 51.82 40.13 64.13 60.74 64.50 57.46
GERM 62.08 68.84 54.25 44.70 64.57 61.43 65.12 59.10

Transcription Factor Prediction (Mouse) Virus Reconstruct

Model 0 1 2 3 4 Covid Reconstruct

DNABERT-2 35.61 74.25 71.16 51.63 34.37 8.31 52.17
GERM-T 39.46 75.27 71.24 57.41 34.28 5.01 55.89
GERM 42.13 76.55 71.96 51.46 36.04 9.14 60.12
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D.3 All Results in Post-Training Quantization

In this section, we present the results of all experiments conducted for the post-training quantization (PTQ).

Table 12: Performance Comparison of Outlier Suppression with DNABERT-2. This table shows the performance of all
models on the Outlier Suppression.

Epigenetic Marks Prediction

Model Bits H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 8W/8A 31.81 0.11 16.17 0.74 14.33 1.69
6W/6A 26.56 1.44 13.76 2.12 13.50 3.04

GERM-T 8W/8A 65.55 33.07 34.81 6.82 23.29 15.60
6W/6A 62.50 11.13 38.51 27.66 21.31 15.68

GERM
8W/8A 66.29 27.78 28.54 32.06 13.47 14.77
6W/6A 60.19 13.89 21.67 28.26 3.72 5.49

Epigenetic Marks Prediction Promoter Detection

Model Bits H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2 8W/8A 17.90 13.30 2.30 11.46 29.46 21.55 26.88
6W/6A 12.66 14.30 2.30 10.68 25.19 18.33 23.10

GERM-T 8W/8A 46.91 32.02 75.01 32.99 53.15 46.88 29.94
6W/6A 44.79 15.91 76.85 11.45 71.60 82.13 44.51

GERM
8W/8A 44.44 29.83 77.00 19.42 75.36 83.04 31.92
6W/6A 22.82 11.73 21.67 3.77 69.04 82.75 23.43

Transcription Factor Prediction (Human) Core Promoter Detection

Model Bits tf0 tf1 tf2 tf3 tf4 all notata tata

DNABERT-2 8W/8A 41.72 41.84 40.79 6.84 42.45 54.50 28.58 54.53
6W/6A 41.43 42.05 39.64 9.96 43.17 55.54 26.75 56.20

GERM-T 8W/8A 35.24 71.82 64.96 37.81 23.54 58.13 60.69 57.54
6W/6A 54.18 76.65 67.42 27.09 23.54 57.69 56.73 73.47

GERM
8W/8A 54.37 52.53 41.99 45.58 59.72 47.09 55.61 66.39
6W/6A 54.62 51.94 41.34 44.74 60.88 46.63 54.85 66.47

Transcription Factor Prediction (Mouse) Virus Splice

Model Bits 0 1 2 3 4 Covid Reconstruct

DNABERT-2 8W/8A 35.39 23.62 52.89 41.51 23.73 23.74 6.69
6W/6A 34.55 23.20 55.55 39.24 25.13 25.55 6.87

GERM-T 8W/8A 35.24 71.82 64.96 37.81 23.54 19.42 30.25
6W/6A 54.18 76.65 67.42 27.09 29.01 53.21 28.47

GERM
8W/8A 50.97 48.73 41.80 50.21 30.48 61.04 36.76
6W/6A 49.96 48.50 39.87 47.53 28.95 59.94 36.79
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Table 13: Performance Comparison of SmoothQuant with DNABERT-2. This table shows the performance of all models
on the SmoothQuant.

Epigenetic Marks Prediction

Model Bits H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2
8W/8A 44.40 -1.47 42.17 13.12 23.30 8.39
6W/6A 28.07 -0.08 22.77 2.96 15.73 0.10
4W/4A -1.85 0.83 -1.09 -0.94 2.31 -0.90

GERM-T
8W/8A 72.44 46.34 50.15 28.18 26.59 23.25
6W/6A 27.19 8.68 28.30 2.15 14.21 4.82
4W/4A 0.00 -2.43 0.94 1.03 0.80 -0.07

GERM
8W/8A 72.07 49.89 52.95 33.11 32.28 24.87
6W/6A 72.23 48.60 53.67 31.94 32.09 24.76
4W/4A 18.17 6.83 20.84 4.03 0.00 1.43

Epigenetic Marks Prediction Promoter Detection

Model Bits H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2
8W/8A 55.54 14.16 2.30 10.19 44.80 58.87 38.19
6W/6A 25.14 20.25 3.99 0.21 78.44 57.23 0.54
4W/4A 0.45 -0.90 -5.07 1.20 0.00 -1.78 -5.42

GERM-T
8W/8A 59.78 48.39 76.85 43.62 73.81 81.40 58.84
6W/6A 49.94 41.77 40.94 20.73 72.97 70.85 12.03
4W/4A -2.53 2.26 0.00 3.10 -1.31 -1.16 0.00

GERM
8W/8A 61.36 50.31 79.61 48.66 80.60 92.51 58.08
6W/6A 62.15 49.05 78.99 48.37 79.95 92.18 58.73
4W/4A 21.16 0.00 56.10 0.17 35.32 76.43 8.04

Transcription Factor Prediction (Human) Core Promoter Detection

Model Bits 0 1 2 3 4 all notata tata

DNABERT-2
8W/8A 45.06 48.20 47.29 4.70 52.27 60.82 41.31 68.15
6W/6A 28.41 29.85 34.60 6.51 20.96 47.72 36.38 31.69
4W/4A 5.55 -2.74 -1.51 -0.72 4.52 1.53 -3.00 -0.15

GERM-T
8W/8A 57.74 52.51 53.17 46.36 65.22 64.15 61.01 75.31
6W/6A 46.18 43.36 38.43 36.12 43.69 52.24 60.68 28.46
4W/4A 2.33 -3.19 -2.42 1.79 4.53 0.78 3.33 -5.73

GERM
8W/8A 58.54 52.44 48.14 45.42 66.42 49.26 64.46 70.31
6W/6A 57.55 51.81 48.29 45.19 65.87 47.55 64.35 69.67
4W/4A 43.41 35.76 25.56 9.77 22.75 21.99 40.51 12.46

Transcription Factor Prediction (Mouse) Virus Splice

Model Bits 0 1 2 3 4 Covid Reconstruct

DNABERT-2
8W/8A 45.74 47.95 67.98 57.32 29.55 27.30 24.70
6W/6A 13.28 25.38 30.48 7.67 12.96 -0.44 0.00
4W/4A 0.06 -1.95 -15.92 -2.76 2.59 0.13 0.95

GERM-T
8W/8A 46.21 82.36 75.48 67.31 33.53 66.74 73.63
6W/6A 0.00 27.14 42.68 21.42 6.52 7.95 0.00
4W/4A -1.22 1.22 0.00 0.00 1.49 -0.22 0.00

GERM
8W/8A 46.87 53.88 54.71 65.01 38.48 64.51 75.14
6W/6A 44.96 60.08 53.97 64.14 37.28 64.69 73.20
4W/4A 8.07 26.40 10.00 27.02 9.80 19.48 0.00
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Table 14: Performance Comparison of OmniQuant with DNABERT-2. This table shows the performance of all models
on the OmniQuant.

Epigenetic Marks Prediction

Model Bits H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2
8W/8A 67.33 20.74 41.80 32.98 29.08 19.58
6W/6A 66.05 14.45 38.10 32.74 27.87 19.58
4W/4A 2.54 -0.73 0.93 2.14 6.01 0.98

GERM-T
8W/8A 72.14 46.57 50.37 35.38 24.90 23.52
6W/6A 71.47 44.40 49.26 35.16 23.22 22.87
4W/4A 0.00 0.00 0.00 -1.65 1.83 -1.30

GERM
8W/8A 72.20 50.02 53.20 33.43 32.80 24.68
6W/6A 71.52 49.17 53.10 32.14 32.92 25.61
4W/4A 70.33 44.65 49.23 28.33 23.55 22.43

Epigenetic Marks Prediction Promoter Detection

Model Bits H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2
8W/8A 60.11 38.01 57.40 18.80 75.24 87.94 37.51
6W/6A 56.96 38.26 59.30 16.63 72.26 89.34 38.56
4W/4A -0.48 2.11 0.00 0.56 0.00 5.89 0.00

GERM-T
8W/8A 61.12 49.38 78.25 44.21 82.19 91.75 59.80
6W/6A 62.14 48.76 78.25 41.23 72.25 91.75 56.87
4W/4A 0.00 2.08 3.31 0.00 8.71 1.09 0.31

GERM
8W/8A 61.64 49.87 79.19 48.48 79.24 92.48 57.42
6W/6A 62.01 50.08 79.33 48.36 79.33 92.13 57.42
4W/4A 59.70 46.49 71.66 42.71 79.79 89.34 49.81

Transcription Factor Prediction (Human) Core Promoter Detection

Model Bits 0 1 2 3 4 all notata tata

DNABERT-2
8W/8A 52.40 52.31 48.78 17.02 55.88 63.98 61.25 69.12
6W/6A 52.53 49.67 45.04 9.14 52.14 62.94 55.92 69.12
4W/4A 5.68 11.69 11.10 2.62 0.00 4.91 7.66 16.69

GERM-T
8W/8A 60.47 82.30 73.72 68.07 44.32 63.48 66.55 72.93
6W/6A 44.96 51.87 72.70 63.35 41.84 63.72 66.55 72.93
4W/4A 9.50 13.09 0.00 6.22 0.00 12.19 35.90 14.08

GERM
8W/8A 45.92 54.67 56.42 67.66 39.22 48.40 64.28 68.68
6W/6A 45.18 53.28 55.45 65.81 38.44 48.37 63.60 68.68
4W/4A 54.40 49.31 43.44 44.76 59.61 38.51 60.73 56.20

Transcription Factor Prediction (Mouse) Virus Splice

Model Bits 0 1 2 3 4 Covid Reconstruct

DNABERT-2
8W/8A 48.88 64.61 62.21 65.79 41.44 46.29 63.82
6W/6A 51.31 67.05 64.04 59.92 37.17 44.42 62.13
4W/4A -1.40 2.44 6.08 0.82 -0.74 44.60 0.00

GERM-T
8W/8A 60.47 82.30 73.72 68.07 44.32 39.59 75.30
6W/6A 44.96 51.87 72.70 63.35 41.84 39.59 68.19
4W/4A 0.00 0.00 9.05 0.00 3.53 -0.18 0.00

GERM
8W/8A 45.92 54.67 56.42 67.66 39.22 46.90 70.33
6W/6A 45.18 53.28 55.45 65.81 38.44 47.12 70.33
4W/4A 42.15 52.01 32.18 62.06 32.30 44.60 33.59
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Table 15: Performance Comparison of Traditional W8A8 PTQ with DNABERT-2. This table shows the performance of
all models on the Traditional W8A8 post-training quantization (PTQ).

Epigenetic Marks Prediction

Model H3 H3K14ac H3K36me3 H3K4me1 H3K4me2 H3K4me3

DNABERT-2 50.39 24.73 26.09 21.80 26.80 5.05
GERM-T 63.62 29.51 39.58 26.13 19.86 17.98
GERM 70.63 50.93 53.15 33.07 35.75 24.79

Epigenetic Marks Prediction Promoter Detection

Model H3K79me3 H3K9ac H4 H4ac all notata tata

DNABERT-2 48.50 42.11 70.95 3.67 71.94 60.04 34.55
GERM-T 56.87 35.84 75.44 24.97 67.34 80.33 25.41
GERM 61.46 50.33 78.53 47.56 80.97 92.28 60.05

Transcription Factor Prediction (Human) Core Promoter Detection

Model 0 1 2 3 4 all notata tata

DNABERT-2 6.98 26.21 57.43 22.41 42.90 49.62 38.69 34.68
GERM-T 50.73 16.09 44.11 21.43 46.94 53.68 61.83 68.45
GERM 57.11 53.20 51.67 45.65 67.63 50.85 64.42 69.35

Transcription Factor Prediction (Mouse) Virus Splice

Model 0 1 2 3 4 Covid Reconstruct

DNABERT-2 21.06 65.35 65.32 29.29 11.28 2.33 14.58
GERM-T 19.18 57.24 16.69 14.64 27.57 6.25 6.88
GERM 45.50 59.92 53.15 62.44 38.58 66.99 75.55

GERM demonstrates exceptional adaptability and performance in post-training quantization tasks, outperforming both
DNABERT-2 and GERM-T across various quantization methods. GERM-T also shows commendable performance, especially
in 8-bit quantization, making it a viable alternative when GERM may not be applicable. These models collectively represent
significant advancements in deploying efficient and accurate genomic prediction tools in environments with limited
computational resources.
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D.4 All Results of Performance Comparison in Resource-Constrained Computing Environments

In this section, we present the results of Performance Comparison in Resource-Constrained Computing Environments. All
models were trained on the same computing infrastructure (Nvidia GeForce RTX 2080 Ti 11GB) to ensure a fair comparison.
The training time represents the average time per epoch, with OmniQuant used as quantization example.

GERM demonstrates superior adaptability and performance in resource-constrained computing environments compared
to DNABERT-2 and GERM-T. Its consistent high MCC scores and reduced training and inference times across various
quantization levels and fine-tuning methods establish GERM as the most robust and efficient model, with GERM-T following
as a commendable second-best option. These attributes make GERM a promising candidate for further research and
application in settings demanding both high performance and computational efficiency.

Table 16: Comparison of Performance in Resource-Constrained Computing Environments. Comparison of three
models on the quantization and fine-tuning task.

Method #Bits MCC (↑) Time (sec.)

DNABERT-2 16W/16A 59.11 7.66
GERM 16W/16A 59.73 6.70
GERM-T 16W/16A 59.30 7.01

DNABERT-2 8W/8A 49.92 5.47
GERM 8W/8A 55.99 4.79
GERM-T 8W/8A 56.80 5.01

DNABERT-2 4W/4A -1.03 3.81
GERM 4W/4A 20.05 3.33
GERM-T 4W/4A 0.22 3.49

Method
Fine-Tuning

Method MCC (↑) Time (sec.)

Train Inference

DNABERT-2 Full 59.11 516.49 3.85
GERM Full 59.73 323.10 3.24
GERM-T Full 59.30 326.91 3.25

DNABERT-2 LoRA 50.91 197.13 4.12
GERM LoRA 57.27 154.67 3.30
GERM-T LoRA 55.60 167.76 3.32

DNABERT-2 QLoRA 50.65 206.15 5.28
GERM QLoRA 53.16 164.10 4.13
GERM-T QLoRA 51.50 177.95 4.17

DNABERT-2 LoftQ 50.76 251.37 5.77
GERM LoftQ 53.11 199.58 4.52
GERM-T LoftQ 51.20 220.37 4.52
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Case Study 2: Performance in CPU-only Computing Environments. To demonstrate GERM’s capability in CPU-only
computing environments, we perform performance tests on an 64-core Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
with 50GB RAM. We compare GERM’s per-epoch training and inference times for the LoRA and QLoRA fine-tuning
methods. The results, presented in Table 17, indicate that both GERM and GERM-T achieve shorter fine-tuning times
per epoch compared to DNABERT-2, with the only exception being QLoRA when deployed, where the time is slightly
longer. QLoRA can be slower than LoRA during inference and fine-tuning due to hardware limitations when bf16 (bfloat16)
support is unavailable. QLoRA relies on ultra-low-precision quantization (e.g., 4-bit weights) to reduce memory usage
and increase efficiency, which works best on systems that support bf16 or similar mixed-precision operations. However,
without bf16 support, these low-precision operations must be emulated by converting back to higher precision, introducing
computational overhead. This diminishes the intended speed advantage of QLoRA, potentially making it slower than LoRA
on incompatible hardware.

Table 17: Comparison of Performance in CPU-only Computing Environments. Comparison of three models on the
fine-tuning task.

Method
Fine-Tuning

Method MCC (↑) Time (sec.)

Train Inference

DNABERT-2 LoRA 50.91 808.23 29.66
GERM LoRA 57.27 618.68 23.10
GERM-T LoRA 55.60 674.40 23.57

DNABERT-2 QLoRA 50.65 516.04 63.17
GERM QLoRA 53.16 358.34 45.28
GERM-T QLoRA 51.50 418.13 46.91

D.5 Evaluation of Common Genomic Foundation Models

In this section, we conduct the experiments to show the performance of common GFMs. As there is no official fine-tuning
code for the Nucleotide Transformer (Dalla-Torre et al., 2024), we utilize its open-sourced checkpoints available on
HuggingFace Model Hub 2 and fine-tune it using our code base with LoRA. We implement HyenaDNA (Nguyen et al.,
2024b) using its official implementation available on HuggingFace 3 and the HuggingFace Trainer. Since HyenaDNA does
not natively support LoRA for fine-tuning, we do not evaluate LoRA’s performance on HyenaDNA. As shown in Table 18,

Table 18: Performance Comparison of Common Genomic Foundation Models.

Model
Fine-Tuning

Method MCC Average Performance Drop

DNABERT-2 Full 59.11 -
LoRA 50.91 13.87%

HyenaDNA Full 51.31 -
LoRA - -

NT-500M-human Full 56.05 -
LoRA 52.66 6.44%

2https://huggingface.co/InstaDeepAI
3https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen-hf
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D.6 Performance of GERM on Alternative Transformer-based Models

In this section, we conduct our experiment to validate the effectiveness of the outlier removal approach using alternative
transformer-based models, evaluating performance through Matthews Correlation Coefficient (MCC) and average perfor-
mance drop. We use the NT-500M-human4 as the target model for our evaluation. Table 19 compares these metrics across
NT-500M-human, GERM, and GERM-T models using different low-rank adaptation methods. Table 20 examines the impact
of various quantization techniques on the same models. The results demonstrate the effectiveness of outlier removal across
diverse adaptation and quantization strategies, highlighting the balance between performance and resource efficiency.

Table 19: Low-Rank Adaptation Methods Comparison. This comparison evaluates the performance of different low-rank
adaptation methods, including Full, LoRA, QLoRA, and LoftQ, on Nucleotide Transformer 500M models. The best results
are highlighted in bold, while the second-best results are underlined.

Model
Fine-Tuning

Method MCC Delta MCC Average Performance Drop

NT-500M-human

Full 56.05 - -
LoRA 52.66 3.39 6.44%
QLoRA 51.46 4.59 8.19%
LoftQ 51.89 4.16 7.42%

GERM (NT-500M-human)

Full 55.52 0.53 -
LoRA 54.32 1.73 2.16%
QLoRA 53.78 2.27 3.13%
LoftQ 54.24 1.81 2.30%

GERM-T (NT-500M-human)

Full 56.53 -0.48 -
LoRA 54.89 1.16 2.90%
QLoRA 52.78 3.27 6.63%
LoftQ 53.45 2.60 5.45%

4https://huggingface.co/InstaDeepAI/nucleotide-transformer-500m-human-ref
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Table 20: Quantization Methods Comparison. This comparison analyzes the performance of various quantization methods,
including FP16, W8A8, Outlier, SmoothQuant, and OmniQuant, on Nucleotide Transformer 500M models. The best results
are highlighted in bold, while the second-best results are underlined.

Model #Bits Quantization Method MCC Delta MCC Average Performance Drop

NT-500M-human

16W/16A - 56.05 - -
8W/8A - 34.66 21.39 38.17%
8W/8A Outlier 32.95 23.10 41.21%
6W/6A 26.65 29.40 52.45%
8W/8A

SmoothQuant
38.23 17.82 31.79%

6W/6A 28.67 27.38 48.84%
4W/4A 3.54 52.51 93.68%
8W/8A

OmniQuant
47.35 8.70 15.52%

6W/6A 43.63 12.42 22.16%
4W/4A 5.34 50.71 90.47%

GERM (NT-500M-human)

16W/16A - 55.53 0.52 -
8W/8A - 53.67 2.38 3.35%
8W/8A Outlier 45.71 10.34 17.68%
8W/8A 41.38 14.67 25.48%
8W/8A

SmoothQuant
53.18 2.87 4.23%

6W/6A 52.43 3.62 5.58%
4W/4A 24.96 31.09 55.05%
8W/8A

OmniQuant
52.45 3.60 5.55%

6W/6A 51.56 4.49 7.15%
4W/4A 46.45 9.60 16.35%

GERM-T (NT-500M-human)

16W/16A - 56.53 -0.48 -
8W/8A - 40.71 15.34 27.99%
8W/8A Outlier 45.98 10.07 18.66%
6W/6A 43.38 12.67 23.26%
8W/8A

SmoothQuant
54.19 1.86 4.14%

6W/6A 38.67 17.38 31.59%
4W/4A 10.57 45.48 81.29%
8W/8A

OmniQuant
52.46 3.59 7.20%

6W/6A 51.34 4.71 9.18%
4W/4A 23.57 32.48 58.31%

30



Fast and Low-Cost Genomic Foundation Models via Outlier Removal

D.7 Performance of GERM on Large-scale GFMs

In this section, we present experiments to validate the effectiveness of GERM on large-scale GFMs. We use the NT-2.5B-
multi5 as the target model for our evaluation. Table 21 compares these metrics across NT-2.5B-multi, GERM, and GERM-T
models using different low-rank adaptation methods. Table 22 extends this analysis to evaluate the impact of various
quantization techniques on the same models. In the larger-parameter model, we adopt stricter quantization bits. This
choice aims to save computation and improve efficiency, as finer compression is crucial when model parameters scale up.
Additionally, experiments conducted with a larger-parameter model further validate these findings, demonstrating that outlier
removal consistently enhances performance and resource efficiency across diverse adaptation and quantization strategies.

Table 21: Comparison of Low-Rank Adaptation Methods in Large-Scale Models. This comparison evaluates the
performance of different low-rank adaptation methods, including Full, LoRA, QLoRA, and LoftQ, on Nucleotide Transformer
2.5B models. The best results are highlighted in bold, while the second-best results are underlined.

Model
Fine-Tuning

Method MCC Delta MCC Average Performance Drop

NT-2.5B-multi

Full 56.98 - -
LoRA 53.50 3.48 6.11%
QLoRA 52.29 4.69 8.19%
LoftQ 52.89 4.09 7.17%

GERM (NT-2.5B-multi)

Full 57.16 -0.18 -
LoRA 55.98 1.18 2.06%
QLoRA 55.52 1.64 2.87%
LoftQ 55.80 1.36 2.38%

GERM-T (NT-2.5B-multi)

Full 56.82 0.16 -
LoRA 55.24 1.58 2.78%
QLoRA 53.32 3.50 6.16%
LoftQ 53.74 3.08 5.42%

5https://huggingface.co/InstaDeepAI/nucleotide-transformer-2.5b-multi-species
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Table 22: Comparison of Quantization Methods in Large-Scale Models. This comparison analyzes the performance
of various quantization methods, including FP16, W6A6, W4A4, Outlier, SmoothQuant, and OmniQuant, on Nucleotide
Transformer 2.5B models. The best results are highlighted in bold, while the second-best results are underlined.

Model #Bits Quantization Method MCC Delta MCC Average Performance Drop

NT-2.5B-multi

16W/16A - 56.98 - -
6W/6A - 18.52 38.46 67.50%
4W/4A - 1.39 55.59 97.56%
6W/6A Outlier 50.23 6.75 11.85%
4W/4A 40.74 16.24 28.50%
6W/6A SmoothQuant 47.23 9.75 17.11%
4W/4A 35.16 21.82 38.29%
6W/6A OmniQuant 49.55 7.43 13.04%
4W/4A 43.63 13.35 23.43%

GERM (NT-2.5B-multi)

16W/16A - 57.16 -0.18 -
6W/6A - 45.96 11.2 19.59%
4W/4A - 42.48 14.68 25.68%
6W/6A Outlier 52.24 4.92 8.61%
4W/4A 49.00 8.16 14.28%
6W/6A SmoothQuant 51.95 5.21 9.11%
4W/4A 48.15 31.09 15.76%
6W/6A OmniQuant 52.55 4.61 8.07%
4W/4A 49.26 7.90 13.82%

GERM-T (NT-2.5B-multi)

16W/16A - 56.82 0.16 -
6W/6A - 32.58 24.24 42.66%
4W/4A - 10.49 46.33 81.54%
6W/6A Outlier 52.14 4.68 8.24%
4W/4A 46.24 10.58 18.62%
6W/6A SmoothQuant 51.61 5.21 9.17%
4W/4A 48.12 8.70 15.31%
6W/6A OmniQuant 52.43 4.39 7.73%
4W/4A 47.28 9.54 16.79%
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D.8 Performance of GERM with Different Outlier Removal Techniques

In this section, we present experiments to validate the effectiveness of GERM compared to other common outlier removal
techniques, including clipped softmax and gated attention (Bondarenko et al., 2024). We utilize SmoothQuant as the
quantization method in our experiments. As shown in Table 23, the results demonstrate the superior effectiveness of outlier
removal by GERM compared to clipped softmax and gated attention. GERM achieves a performance improvement of 2.59%
in 4-bit quantization and 1.99% in 8-bit quantization.

Table 23: Performance of GERM with Clipped Softmax and Gated Attention

Method #Bits MCC (↑) Average Performance Drop

DNABERT-2 16W/16A 59.11 -
GERM 16W/16A 59.73 -
Clipped Softmax 16W/16A 59.17 -
Gated Attention 16W/16A 59.49 -

DNABERT-2 8W/8A 49.92 15.55%
GERM 8W/8A 55.99 6.26%
Clipped Softmax 8W/8A 53.26 9.99%
Gated Attention 8W/8A 54.58 8.25%

DNABERT-2 4W/4A -1.03 101.74%
GERM 4W/4A 20.05 66.43%
Clipped Softmax 4W/4A 13.49 77.20%
Gated Attention 4W/4A 18.66 69.02%

D.9 PTQ Performance of GERM Following LoRA Fine-Tuning

In this section, we present experiments to validate the effectiveness of GERM on post-training quantization (PTQ) perfor-
mance following LoRA adaptation. We employ SmoothQuant as the quantization method in our evaluation. As shown
in Table 24, the results highlight the superior outlier mitigation capability of GERM, leading to improved PTQ perfor-
mance. Specifically, using W8A8 quantization GERM achieves a 84.72% improvement over the baseline, demonstrating its
effectiveness in low-rank adaptation and quantization scenarios.

Table 24: Comparison of Post-Training Quantization (PTQ) Performance Across Low-Rank Adaptation Methods
in Large-Scale Models This comparison assesses the performance of SmoothQuant (SQ) following low-rank adaptation
fine-tuning using LoRA on DNABERT-2 117M models. The top-performing results are shown in bold, and the second-best
results are underlined for clarity.

Model Method MCC Delta MCC Average Performance Drop

DNABERT-2
Full 59.11 7.00 -
LoRA 50.91±1.67 15.2 13.87%
LoRA + SQ 34.23±1.56 31.88 42.09%

GERM
Full 59.73 6.38 -
LoRA 57.27±0.70 8.84 4.12%
LoRA + SQ 55.89±0.93 10.22 6.43%

GERM-T
Full 59.30 6.81 -
LoRA 55.60±0.28 10.51 6.23%
LoRA + SQ 54.26±0.65 11.85 8.50%
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D.10 Attention Distribution Visualization in GERM

In this section, to better understand the impact of outlier removal in GERM, we visualize the attention score distributions
across transformer layers, as shown in Figure 3. We visualize the attention distributions for three different DNA sequences
from the mouse 0 dataset, showing both attention probabilities and attention scores for the vanilla and GERM versions of
DNABERT-2. The attention probability captures the probability between each token and all other tokens, while the attention
score is computed by multiplying the attention probability with the attention value, yielding a tensor of shape (number of
tokens × hidden dimension). For visualization purposes, we use the last hidden layer of the model and display the first
32 dimensions of the attention score. These visualizations reveal that GERM produces smoother and more stable attention
patterns compared to baseline models such as DNABERT-2, which exhibit sharp spikes and irregularities due to the influence
of outliers. The reduced variance and kurtosis in GERM’s attention maps confirm its ability to suppress low-information
tokens, resulting in more efficient and interpretable attention behavior.

E Additional Discussion and Limitation

In this section, we provide additional discussion on the limitations of GERM-T. As a trade-off approach, GERM-T is designed
as a practical extension of GERM for continual low-resource adaptation, minimizing recomputation by reusing pre-trained
checkpoints and applying small-step updates. While it achieves a balance between performance and computational cost
under 8-bit quantization, one key limitation is that GERM-T performs worse in certain quantization and low-rank adaptation
settings, particularly under low-bit quantization scenarios. This performance degradation results primarily from the restricted
optimization scope imposed by small-step fine-tuning and the accumulation of approximation errors. Comparing with
GERM, these errors prevent GERM-T from fully mitigating inherent outliers, leading to increased average kurtosis and
maximum infinity norm. In future work, we explore the underlying causes of this degradation in greater depth and develop a
more robust quantization-aware training (QAT) approach to better manage these trade-offs.

F Definition of Outlier in Our Paper

In this section, we provide more detailed deification of outlier in our paper. In our work, we define outliers as tokens or
activations that disproportionately influence the attention mechanism, despite containing little or no meaningful information.
These outliers emerge when the softmax function amplifies the attention probabilities of tokens that ideally should receive
minimal or zero focus. We use the following attention mechanism to analyze this behavior:

Output = Residual
(

Softmax
(
QK⊤
√
d

)
V +X

)
.

As shown in Hu et al. (2024a), if the attention input X already contains sufficient information, the attention mechanism
within the residual connection should ideally behave like an identity transform, producing near-zero attention outputs:

Softmax
(
QK⊤
√
d

)
V ≈ 0.

In such cases, tokens with high values in V —which may represent biologically significant features—should still receive
near-zero attention probabilities.

Why Classic Softmax Fails. The problem arises from how the softmax function normalizes probabilities. Softmax
enforces that all probabilities sum to one, which inherently magnifies the attention probabilities assigned to low-value
tokens. This unwanted amplification broadens the attention score distribution and introduces outliers—tokens that exert
disproportionate influence despite their low informational value.

These outliers are particularly problematic in genomic models like DNABERT-2, where certain regions of genomic
sequences—such as repetitive patterns, low-complexity sequences, or non-coding regions—resemble no-op tokens. While
these regions carry minimal biological relevance, the classic softmax mechanism may assign them higher-than-expected
attention scores, diverting focus away from meaningful genomic features.
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Intuition Behind Outliers in Genomic Models. Outliers in genomic models typically arise from sequence patterns that
produce anomalous query-key interactions in the attention mechanism. While genomic data lacks traditional “words” as in
language models, certain biological patterns exhibit similar behavior. Key examples include:

• Low-Complexity Regions (e.g., Poly-A or Poly-T Sequences): Genomic sequences often include regions with runs of
identical bases (e.g., AAAAA..., TTTTT...). These sequences contain minimal unique information yet can produce
large, uniform dot-product values in the attention mechanism. This causes softmax to assign exaggerated probabilities to
these low-information tokens, effectively making them outliers.

• Repetitive Motifs and Tandem Repeats: Certain genomic regions, such as microsatellites and tandem repeats, involve
recurring nucleotide patterns that behave similarly to low-value tokens in the attention mechanism. These patterns exhibit
strong internal correlations, often resulting in softmax overemphasizing them as if they were biologically significant.

• Boundary and Spacer Elements (e.g., Alignment Padding or Non-coding Spacer Sequences): In genomic datasets,
artificial padding sequences, non-coding segments, or spacer sequences are sometimes introduced to ensure proper
sequence alignment. These tokens are intended to have no biological relevance, yet softmax’s behavior inadvertently
amplifies their attention scores, creating noise that distorts meaningful patterns.

35



Fast and Low-Cost Genomic Foundation Models via Outlier Removal

Attention Probability Attention Score

(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

Figure 3: Attention Distribution Visualization in GERM. Comparison of attention probabilities and outputs for a
genomic sample between DNABERT-2 and NT-500M-human. Heatmaps from the final hidden layers are scaled from 0
(blue) to 1 (red). In the figure, all rows labeled (a) correspond to the vanilla DNABERT-2, while all rows labeled (b)
represent the GERM version. The vanilla model exhibits a broad attention spread, which dilutes focus across tokens,
whereas GERM concentrates attention on key tokens, enhancing both efficiency and interpretability.
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