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1 Introduction
We present a unified theoretical framework and establish sharp statistical rates for standard and
variant flow-matching generative models with high-order velocity fields. A rigorous theoreti-
cal understanding of such models is crucial in the current era of rapidly advancing generative
AI. Flow-based generative models, particularly those employing Flow Matching (FM) principles
[Lipman et al., 2022, Liu et al., 2022], have emerged as a powerful class of methods, achieving
state-of-the-art performance across diverse domains such as image, speech, and video generation
[Esser et al., 2024, Le et al., 2023, Polyak et al., 2025]. Standard flow matching has focused
on learning first-order trajectory dynamics by matching the instantaneous velocity field [Lipman
et al., 2022, Liu et al., 2022, Lipman et al., 2024, Gat et al., 2024, Chen and Lipman, 2023].

However, there is a growing interest in leveraging richer dynamical information, such as high-
order time derivatives of the trajectory, with the intuition that this could lead to more expressive
models, smoother generation paths, improved physical plausibility, or more efficient sampling
strategies. This trend is evident in recent empirical works. For instance, High-Order Matching
for One-Step Shortcut Diffusion (HOMO) [Chen et al., 2025] and Force Matching (ForM) [Cao
et al., 2025] have shown that supervising on acceleration and jerk leads to improved smoothness,
stability, and precision in generative tasks, particularly in high-curvature regions where first-order
methods falter.

Despite these promising empirical explorations into high-order dynamics, there lacks a compre-
hensive theoretical framework that incorporates derivatives up to an arbitrary order K. Rigorous
understanding of its statistical properties is also missing. This paper addresses these gaps by in-
troducing High-Order Flow Matching, a generalized theoretical framework for flow-based gener-
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ative modeling. Specifically, High-Order Flow Matching defines a K-order velocity field ft. This
field is constructed by concatenatingK individual d-dimensional column vector fields u1, . . . , uK .
Each uk component is designed to capture aspects of the flow dynamics, with u1 representing the
primary velocity and uk (with k > 1) capturing higher-order temporal information of an under-
lying flow. To complete the theoretical foundation of High-Order Flow Matching, we analyze its
statistical rates when implemented with transformers [Vaswani et al., 2017] to align with modern
developments in practice.

Contributions. Our contributions are two-fold:

• High-Order Flow Matching: A Unified Theoretical Framework. We present a unified
framework for Flow Matching models. We first introduce the flow ODEs of any order (Def-
inition 3.1) and the mass conservation formula (Theorem 3.2). A key technical innovation
is the high-order marginalization technique (Theorem 3.3). This approach, incorporating a
consistency constraint, leads to a tractable loss for K-order flow matching (Theorem 3.4).
We then prove that High-Order Flow Matching subsumes standard first-order Flow Match-
ing (when K = 1, Proposition 3.1) and provides a unified theoretical foundation for under-
standing emerging high-order flow model approaches. For example, the objective in HOMO
[Chen et al., 2025], which target velocity and acceleration, are instantiated by High-Order
Flow Matching for K = 2.

• Statistical Rates for High-Order Flow Matching with Transformers. We provide the
first rigorous statistical analysis of the High-Order Flow Matching framework when im-
plemented with transformer architectures. We establish sharp approximation rates for trans-
formers learning theK velocity components u1, . . . uK (Theorem 4.1), derive corresponding
estimation error rates (Theorem 4.2), and further provide end-to-end distribution estimation
rates under the 2-Wasserstein metric (Theorem 4.3). In addition, we show that these rates
are nearly minimax optimal up to logarithmic factors (Theorem 4.4). Importantly, our rates
match the established near-minimax optimal rates of standard flow matching [Jiao et al.,
2024, Fukumizu et al., 2024].

Organization. Section 2 reviews preliminary concepts about standard flow matching. Section 3
details the High-Order Flow Matching framework, its properties, and its connections to existing
methods. Section 4 presents statistical results. Section 5 summarizes our work and discusses the
implications of our findings. The appendix includes the supplementary theoretical backgrounds
(Section B), the detailed proofs of the main text (Sections C to G), the statistical rates for standard
first-order flow matching transformers (Section I) and its proof (Sections J to N).

Notation. We denote the index set {1, . . . , I} by [I]. Let x[i] denote the i-th component of a
vector x. Let Z denote integers and Z+ denote positive integers. Given random variables X and
Y with marginal densities µx and µy respectively, we denote the 2-Wasserstein distance between
µx and µy by W2(µx, µy). Given a matrix Z ∈ Rd×L, ∥Z∥2 and ∥Z∥F denote the 2-norm and the
Frobenius norm. Let uk ∈ Rd be column vectors for k ∈ [K], we denote col(u1, . . . , uK) ∈ Rkd

as the vertical concatenation of u1, . . . , uK . Let Div · be the divergence operator.
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2 Preliminaries
In this section, we provide a high-level overview of the Flow Model and Flow Matching (FM).

Flow Model. The flow model transforms X0 = x0 from a source distribution P (e.g., the
Gaussian distribution) into samples X1 = x1 from a target distribution Q. A flow ψ : [0, 1] ×
Rd → Rd is a time-dependent mapping implementing ψ : (t, x) 7→ ψt(x). The flow model is a
continuous-time Markov process (Xt)0≤t≤1 defined by applying a flow ψt to the random variable
X0 ∼ P :

Xt = ψt(X0), t ∈ [0, 1].

On the other hand, a time-dependent velocity field u : [0, 1]×Rd → Rd implementing u : (t, x) 7→
ut defines a unique flow ψ via the following ordinary differential equation (ODE):

dψt

dt
= ut(ψt(x)) with initial condition ψ0(x) = x. (2.1)

Given a flow ψt, the marginal probability density function (PDF) of flow modelXt = ψt(X0) ∼ pt
is a continuous-time probability path (pt)0≤t≤1. The probability path pt follows push-forward
equation:

pt(x) = [ψt]∗p0(x) := p0(ψ
−1
t (x)) ·

∣∣∣∣det[∂ψ−1
t

∂x

]∣∣∣∣. (2.2)

Further, by the equivalence of flows and velocity fields [Lipman et al., 2024], given invertible C1

diffeomorphism ψt, there exists a unique smooth conditional velocity field ut taking form:

ut(x) = ψ̇t(ψ
−1
t (x)), with ψ̇t =

d

dt
ψt. (2.3)

For an arbitrary probability path pt, we define a velocity field ut that generates pt if its flow ψt

satisfies (2.2). Continuous Normalizing Flow [Chen et al., 2018] models the velocity field ut with
a neural network uθ. Once we obtain a well-trained uθ, we generate samples from solving ODE
(2.1).

Flow Matching. Instead of training flow model by maximizing the log-likelihood of training data
[Chen et al., 2018], flow matching [Lipman et al., 2022] is a simulation-free framework to train
flow generative models without the need of solving ODEs during training. The Flow Matching
objective is designed to match the probability path (pt)0≤t≤1, which allows us to flow from source
p0 = P to target p1 = Q. Suppose ut generates such probability path pt, the flow matching loss is

LFM(θ) = E
t,Xt∼pt

[∥uθ(Xt, t)− ut(Xt)∥22], (2.4)

where t ∼ U [0, 1], uθ is a neural network with parameter θ. Flow Matching simplifies the problem
of designing a probability path pt and its corresponding velocity field ut by adopting a conditional
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strategy. Formally, conditioning on any arbitrary random vector Z ∈ Rm with PDF pZ , the
marginal probability path pt satisfies

pt(x) =

∫
pt(x|z)pZ(z)dz. (2.5)

Suppose conditional velocity field ut(x|z) generates pt(x|z), Lipman et al. [2022] show that fol-
lowing marginal velocity field ut generates marginal probability path pt under mild assumptions:

ut(x) :=

∫
ut(x|z)pZ|t(z|x)dz with pZ|t(z|x) =

pt(x|z)pZ(z)
pt(x)

, (2.6)

where the second equation follows from the Bayes’ rule. Combining above, the tractable condi-
tional flow matching loss LCFM, which satisfies ∇θLCFM(θ) = ∇θLFM(θ), is defined as:

LCFM(θ) = E
t,Z∼pZ ,Xt∼pt(·|Z)

[∥uθ(Xt, t)− ut(Xt|Z)∥22]. (2.7)

Affine Conditional Flows. The conditional flow matching loss works with any choice of con-
ditional probability path and conditional velocity fields. In this paper, we consider the affine
conditional flow with independent data coupling following [Lipman et al., 2022, 2024]:

ψt(x|x1) = µtx1 + σtx, (2.8)

where µt, σt : [0, 1] → [0, 1] are monotone smooth functions satisfying

µ0 = σ1 = 0, µ1 = σ0 = 1, and
dµt

dt
,−dσt

dt
> 0 for t ∈ (0, 1). (2.9)

Setting Z = X1 ∼ Q, X0 ∼ N(0, I), the flow ψt induces the probability flow pt(Xt|X1) =
N(µtX1, σ

2
t I) and velocity field

ut(x|x1) = ψ̇t(ψ
−1
t (x|x1)|x1) =

σ̇t(x− µtx1)

σt
+ µ̇tx1. (2.10)

Further, using the law of unconscious statistician with Xt = ψt(X0|X1), the conditional flow
matching loss takes the form

LCFM(θ) = E
t,X1∼q,X0∼N(0,I)

[
∥uθ(µtX1 + σtX0, t)− (µ̇tX1 + σ̇tX0)∥22

]
. (2.11)

In practice, for collected i.i.d. data points {xi}ni=1, (2.11) is implemented with Monte-Carlo simu-
lation. To avoid instability, we often clip the interval [0, 1] with t0 and T . Namely, for any velocity
estimator uθ, we consider the empirical loss function L̂CFM(u

θ):

L̂CFM(u
θ) :=

1

n

n∑
i=1

∫ T

t0

1

T − t0
E

X0∼N(0,I)

[
∥uθ(µtxi + σtX0, t)− (µ̇txi + σ̇tX0)∥22

]
. (2.12)
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Transformers. Throughout the paper, we parameterize uθ by transformers. Due to space limit,
we defer formal definition of transformer networks to Section B.

3 High-Order Flow Matching
This section extends the flow matching framework in Section 2 to incorporate high-order trajectory
information. Recall that these high-order dynamics are proven to be relevant to further improv-
ing the performance and stability of flow matching. Specifically, in Section 3.1, we first define a
high-order velocity field ft using an ODE system and subsequently prove its equivalence to the
mapping flow ψt (Theorem 3.1). Furthermore, we derive the corresponding Liouville’s equation
(Theorem 3.2), which demonstrates mass conservation for this high-order system. Building on
this foundation, Section 3.2 addresses the learning objective. We first propose the high-order Flow
Matching loss (Definition 3.2). However, similar to flow matching [Lipman et al., 2022], direct
optimization is intractable. To address this, we establish the high-order marginalization trick under
consistency constraint (Theorem 3.3). The method allows us to derive a tractable high-order con-
ditional flow matching loss that preserves the original loss’s gradients (Theorem 3.4). Section 3.3
clarify how that High-Order Flow provides a unifying theory. Specifically, we demonstrate that
high-order flow matching subsumes existing flow-based generative modeling techniques, with
standard Flow Matching serving as a foundational instance within our framework.

3.1 High-Order Flow Model
For t ∈ [0, 1], let ψt and pt be the time-dependent flow mapping and probability paths follows
Section 2. Instead of using velocity field ut to construct flow ψt via the ODE (2.1), we propose
using K-order velocity field ft : RKd → RKd to construct ψt:

Definition 3.1 (High-Order Velocity). Let t ∈ [0, 1], a flow ψt can define a K-order velocity
field ft : RKd → RKd via the following ODE:

d

dt
yt =


d1

dt1
ψt(x)

d2

dt2
ψt(x)
...

dK

dtK
ψt(x)

 =


u1(x

(0)
t , t)

u2(x
(0)
t , t)
...

uK(x
(0)
t , t)

 = ft(yt) with ψ0(x) = x, (3.1)

where yt = col(ψt(x),
d
dt
ψt(x), . . . ,

dK−1

dtK−1ψt(x)) := col(x(0)t , x
(1)
t , . . . , x

(K−1)
t ) ∈ RKd and uk :

Rkd×[0, 1] → Rd is k-th order velocity field for all k ∈ [K]. Moreover, notice thatX(0)
t = ψt(X0)

is random variable since X0 ∼ p. Then, the extended state variable of order K is the random
vector

Yt = col(X(0)
t , . . . , X

(K−1)
t ) ∈ RKd with X

(k)
t :=

dk

dtk
ψt(x)|x=X

(0)
0
. (3.2)
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For k = 0, . . . , K − 1, define pkt : Rd → R as the probability density function of X(k)
t . Denote

ρt : RKd → R as the probability density function of Yt = [X
(0)
t , . . . , X

(K−1)
t ]⊤ at time t. For

simplification, we define Yt satisfy d
dt
Yt = ft(Yt) if (3.1) and (3.2) hold.

Remark 3.1 (Total Derivative Constraints). The ODE (3.1) imposes a sequence of total deriva-
tive constraints on the velocity fields u1(x(0)t , t), . . . , uK(x

(0)
t , t), for any k ∈ [K]:

uk(x
(0)
t , t) =

dk

dtk
ψt(x) =

d

dt
uk−1(x

(0)
t , t) =

∂

∂t
uk−1(x

(0)
t , t) +∇uk−1(x

(0)
t , t) · u1(x(0)t , t), (3.3)

where u0(x(0)t , t) = x
(0)
t . This recursive relation reveals that the velocity fields induced by the

flow ψt are not independent, but instead coupled through the structure of the ODE via (3.3).

Remark 3.1 guarantees the equivalence between flows ψt and K-order velocity field ft.

Theorem 3.1 (Flow–Velocity Equivalence via ODE). Define the class of structured k-order ve-
locity fields as those of the form:

ft(yt) = col(u1(x(0)t , t), . . . , uK(x
(0)
t , t)) ∈ RKd, yt = col(x(0)t , . . . , x

(K−1)
t ) ∈ RKd,

where uk : RKd × [0, 1] → is locally lipschitz in yt and continues in t for any k ∈ [K]. Suppose
the velocity fields u1(x(0)t , t), . . . , uK(x

(0)
t , t) satisfy total derivative constraints (3.3). Then, for

any initial condition y0 ∈ RKd, the ODE d
dt
yt = ft(yt) exists a unique local solution yt, which

defines a K-times differentiable flow ψt(x) := x
(0)
t and satisfy dk

dtk
ψt(x) = x

(k)
t for all k ∈ [K].

Conversely, any K-times differentiable flow ψt : Rd → Rd defines a velocity field ft via (3.1).

Proof. Please see Section C.1 for a detailed proof.

Recalling from Section 2 and the flow-velocity equivalence established in Theorem 3.1, the K-
order velocity field ft governs the evolution of the probability density ρt for the K-order state Yt.
The precise relationship describing this evolution is captured by the mass conservation formula:

Theorem 3.2 (Mass Conservation of High-Order Flow). Let yt = (x
(0)
t , . . . , x

(K−1)
t )⊤ ∈ RKd.

Let velocity field ft(yt) = (u1(x
(0)
t , t), . . . , uK(x

(0)
t , t))⊤ ∈ RKd, where uk(x(0)t , t) is locally

Lipschitz and integrable for all k ∈ [K]. Let ρt : RKd → R be a time-varying probability density
over the extended state Yt ∈ RKd follows Definition 3.1. Then the following statements are
equivalent:

1. The pair (ft, ρt) satisfies the Liouville’s equation on the extended space:

∂

∂t
ρt(y) +∇y · (ρt(y)ft(y)) = 0, for all t ∈ [0, 1).
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2. Following Definition 3.1, the probability law of Yt evolves under the flow:

d

dt
Yt = ft(Yt), with Y0 ∼ ρ0, Yt ∼ ρt. (3.4)

For some arbitrary probability path ρt, we define ft generates ρt if (3.4) holds.

Proof. Please see Section C.2 for a detailed proof.

3.2 High-Order Flow Matching
To model the K-order velocity field ft, we introduce following high-order flow matching loss:

Definition 3.2 (High-Order Flow Matching Loss). Let ft denote the ground truth K-order ve-
locity field and f θ

t be its estimator parameterized by a neural network. Let ρt be the probability
density function of Yt. Then, the K-order Flow Matching objective minimizes the following re-
gression loss:

LK
FM(θ) = E

t,Yt∼ρt
[D(ft(Yt), f

θ
t (Yt))],

where D is a dissimilarity measure between vectors, such as the squared ℓ2-norm.

Similar to standard flow matching, the ground truth velocity ft is intractable. To address this, we
adopt the conditional flow matching loss to train our model, leveraging the equivalence between
the flow matching loss and its conditional counterpart. As a preliminary step, we introduce the
marginalization trick for high-order flow matching.

Theorem 3.3 (Marginalization). Recall that for some arbitrary probability path ρt, ft gener-
ates ρt if Yt ∼ ρt for all t ∈ [0, 1). Let Z be a random variable, if ft(x|z) is condition-
ally integrable and generates the conditional probability path ρt(·|z), then the marginal velocity
ft :=

∫
ft(y|z)pt(z|y)dz generates the marginal probability path pt.1

Proof. Please see Section C.3 for a detailed proof.

Now we are ready to prove the higher version of the equivalence between the flow matching
loss and conditional flow matching loss. We first define the tractable K-order conditional flow
matching loss:

LK
CFM(θ) = E

t,Z,Yt∼ρt|Z(·|Z)
[D(ft(Yt|Z), f θ

t (Yt))]. (3.5)

Following Lipman et al. [2024], we specify the dissimilarity metric D(·, ·) as a Bregman diver-
gence, which measures the distance between vectors u, v ∈ RKd as D(u, v) := Φ(u) − [Φ(v) +
(u − v)⊤∇Φ(v)] where Φ : RKd → R is a strictly convex function defined on a convex domain
Ω ⊂ RKd. Bregman divergences possess a key property allowing interchanging gradients and

1The marginal velocity ft implies a consistency constraint: uk
t (y) =

∫
uk
t (y|z) · pt(z|y)dz for all k ∈ [K].
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expectations [Holderrieth et al., 2025, Lipman et al., 2024]:

∇vD(E[Y ], v) = E[∇vD(Y, v)] for any random vector Y ∈ RKd. (3.6)

This property implies that the gradients of the flow matching loss and the conditional flow match-
ing loss are identical, making the two objectives equivalent for training.

Theorem 3.4 (Gradient Equivalence of Losses). Let the Flow Matching loss LK
FM be defined as

in Definition 3.2, and the Conditional Flow Matching loss LK
CFM be defined as in (3.5). Then,

when D(·, ·) is a Bregman divergence, the gradients of the two losses coincide:

∇LK
FM(θ) = ∇LK

CFM(θ).

Proof. Please see Section C.4 for a detailed proof.

We now consider training the model using the pre-constructed conditional flow ψt(x | x1) as
described in Section 2. By the equivalence between flows and high-order velocity fields (Theo-
rem 3.1), there exists a unique smooth conditional K-order velocity field ft such that the condi-
tional trajectory yt satisfies the ODE: d

dt
yt = ft(yt), in accordance with (3.1). Following Defini-

tion 3.1, we specify ψt(x | x1) = µtx1 + σtx, which induces a family of k-th order velocity fields
uk. By Definition 3.1, for all k ∈ [K], we have

uk(x
(0)
t , t) =

dk

dtk
x
(0)
t =

dk

dtk
ψt(x).

(
By Definition 3.1

)
Because ψt is an invertible diffeomorphism, we define x′ = ψ−1

t (x) and obtain

uk(ψt(x), t) = uk(x′, t) =
dk

dtk
ψt(ψ

−1
t (x′)).

Extending this to the conditional setting, the conditional k-th order velocity field becomes

uk(x, t|X(0)
1 ) =

dk

dtk
ψt(ψ

−1
t (x|X(0)

1 )|X(0)
1 ). (3.7)

Combining the results above, we now revisit the tractable training loss by setting Z = X
(0)
1 ∼ q:

LK
CFM(θ) = E

t,X
(0)
1 ∼q,Yt∼ρ

t|X(0)
1

(·|X(0)
1 )

[D(ft(Yt|X(0)
1 ), f θ

t (Yt))].
(
By (3.5)

)

For further simplifications, we adopt the squared ℓ2 norm as the Bregman divergence. Let uk

denote the k-th order velocity field, and uk,θ be its estimator parameterized by a neural network.
Denoting the distribution of the k-th order state as X(k)

t ∼ pkt , the training objective becomes

LK
CFM(θ) = E

t,X
(0)
1 ∼q,Yt∼ρ

t|X(0)
1

(·|X(0)
1 )

[
∥ft(Yt|X(0)

1 )− f θ
t (Yt)∥22

] (
By (3.5)

)
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= E
t,X

(0)
1 ∼q,Yt∼ρ

t|X(0)
1

(·|X(0)
1 )

[ K∑
k=1

∥uk(Yt, t|X(0)
1 )− uk,θ(Yt, t)∥22

] (
By Definition 3.1

)

= E
t,X

(0)
1 ∼q

[ K∑
k=1

E
X

(0)
0 ∼p(·|X(0)

1 )

∥ dk

dtk
ψt(X

(0)
0 |X(0)

1 )− uk,θ(X
(0)
t , t)∥22

] (
By (3.7)

)

=
K∑
k=1

E
t,X

(0)
1 ∼q,X

(0)
0 ∼p(·|X(0)

1 )

[
∥ dk

dtk
ψt(X

(0)
0 |X(0)

1 )− uk,θ(X
(0)
t , t)∥22

]
. (3.8)

The intermediate states X
(1)
t , . . . , X

(k−1)
t are determined by X

(0)
0 via the relation X

(k)
t :=

dk

dtk
ψt(x)|x=X

(0)
0

. Therefore, the inside expectation only needs to be taken over X(0)
0 .

Now, we consider the affine conditional flow ψt(x|x1) = µtx1 + σtx follows Section 2. Applying
(3.8), the high-order conditional flow matching loss takes the form

LK
CFM(θ) =

K∑
k=1

E
t,X

(0)
1 ∼q,X

(0)
0 ∼p(·|X(0)

1 )

[
∥(µ(k)

t X
(0)
1 + σ

(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22

]
.

In practice, we train the general high-order velocity estimator u1,θ, . . . , uK,θ with i.i.d samples
{xi}ni=1 by optimizing the empirical high-order conditional flow matching loss:

L̂K
CFM :=

1

n

n∑
i=1

K∑
k=1

1

T − t0

∫ T

t0

E
X0∼p(·|X(0)

1 )

[
∥(µ(k)

t xi + σ
(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22

]
dt. (3.9)

A significant theoretical consequence of learning the complete K-order velocity field ft is the
ability to employ high-order numerical integration schemes for sampling. For instance, to solve
the ODE (3.1), we use K-th order Taylor expansion with step size h for the numerical integration:

x
(0)
t+h = xt + hu1,θ(x

(0)
t , t) +

h2

2!
u2,θ(x

(0)
t , t) + · · ·+ hK

K!
uK,θ(x

(0)
t , t). (3.10)

3.3 Unified Perspective on High-Order Flow Dynamics
We show that our K-order flow matching framework offers a significant unification perspective
and a theoretical foundation on existing flow-based generative modeling. Firstly, our framework
subsumes standard first-order Flow Matching [Lipman et al., 2022] as a direct special case.

Proposition 3.1 (Reduction to Standard First-Order Flow Matching). When K = 1, the entire
K-order flow matching framework, including the governing ODE, the probability path definition
via the continuity equation, and the K-order flow matching objective, becomes precisely equiv-
alent to the standard first-order Flow Matching framework as detailed in [Lipman et al., 2022,
2024].
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Proof. Please see Section C.5 for a detailed proof.

Proposition 3.1 establishes ourK-order framework as a strict generalization of standard first-order
Flow Matching. Beyond encompassing established methods, our K-order framework provides a
robust theoretical structure for understanding models that leverage high-order trajectory dynamics.

For instance, HOMO framework [Chen et al., 2025] defines its training objective ([Chen et al.,
2025, Definition 4.3]) by matching network predictions against the true velocity ẋ and acceler-
ation ẍ of trajectories. Removing the regularization term (aligns with our total derivative con-
straints Remark 3.1), their loss is also a direct instantiation of our K-order framework’s objective
(Definition 3.2) for K = 2. Furthermore, while the Force Matching (ForM) model [Cao et al.,
2025] introduces specific relativistic constraints, its fundamental generative mechanism involves
matching a target “force” field ([Cao et al., 2025, Definition 4.1]). Given that force is propor-
tional to acceleration, if separated from its relativistic regularization, aligns with matching the
second-order information captured within our K = 2 framework.

In summary, the K-order flow matching framework serves as a unifying theoretical structure. It
not only subsumes standard flow matching but also provides formal grounding for models that
have intuitive or empirical benefits of incorporating richer, high-order dynamical information.
The subsequent statistical analysis in Section 4 builds upon this unified perspective.

4 Statistical Rates of High-Order Flow Matching Transform-
ers

This section characterizes sharp statistical rates forK-order flow matching transformers. Building
on Section 2 and Section 3, we consider the case of affine conditional flow with independent data
coupling. We focus on transformer architectures as Flow matching (FM) with transformers powers
today’s best generative models, including MovieGen [Polyak et al., 2025] and Voicebox [Le et al.,
2023] by Meta, and Rectified Flow [Esser et al., 2024] by Stability AI. Section 4.1 and Section 4.2
establish bounds for the approximation and estimation of the K-order velocity. Based on the K-
order velocity estimation rates, Section 4.3 analyzes the distribution estimation rate under the
2-Wasserstein metric. Finally, Section 4.4 presents the nearly minimax optimality of the K-order
velocity estimators.

Transformers. We defer standard definition of transformer to Section B due to the page limit.

4.1 High-Order Velocity Approximation
To establish a statistical theory for K-order flow matching transformers, we first investigate an
approximation theory for the K-order velocity under sub-Gaussian assumption. In particular, we
characterize the regularity of the target density function q(x1) with Hölder smoothness, defined
by:

11



Definition 4.1 (Hölder Space). Let α ∈ Zd
+, and let β = k1+γ denote the smoothness parameter,

where k1 = ⌊β⌋ and γ ∈ [0, 1). Given a function f : Rd → R, the Hölder space Hβ(Rd) is defined
as the set of α-differentiable functions satisfying: Hβ(Rd) :=

{
f : Rd → R | ∥f∥Hβ(Rd) <∞

}
,

where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) :=
∑

∥α∥1<k1

sup
x

|∂αf(x)|+ max
α:∥α∥1=k1

sup
x̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

Also, we define the Hölder ball of radius B by Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

With Definition 4.1, we state our assumption on the target density function q(x1):

Assumption 4.1 (Sub-Gaussian Property and Hölder Smoothness of Target Distribution). The
target distribution q(x1) ∈ Hβ(Rdx , B). Further, there exist two positive constants C1 and C2 such
that q(x1) ≤ C1 exp(−C2∥x1∥22/2).

Assumption 4.1 provides a tail bound for the approximation error, and we leverage it to address
the error outside the bounded domain where our transformer approximation applies. We now
present the approximation theory for high-order flow matching transformers.

Theorem 4.1 (K-order Velocity Approximation with Transformers). Assume Assumption 4.1.
Suppose the k-th order velocity field uk(x, t) is Lk-Lipschitz for all k ∈ 0, . . . , K − 1 in ℓ2-
distance. Let ϵ ∈ (0, 1) be the precision parameter satisfying ϵ ≤ O(N−β) for some N ∈ N and
smoothness parameter β > 0. Then, there exists transformers u1,θ(x, t), . . . , uK,θ(x, t) ∈ T h,s,r

R

such that for any x ∈ Rdx and t ∈ [0, 1], it holds:

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt = O
(
N−2β · (logN)

dx
2
−1
)
.

Further, for all k ∈ [K], the parameter bounds in transformer network class satisfy

CKQ, C
2,∞
KQ = O(N2β(2d+1)(logN)2d+1); COV , C

2,∞
OV = O(N−β);

CF , C
2,∞
F = O(Nβ

√
logNLk−1); CE = O(1); CT = O(Lk−1),

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. Please see Section D for a detailed proof.

4.2 High-Order Velocity Estimation
In this section, we apply the approximation results in Section 4.1 to derive K-order velocity
estimation rates (Theorem 4.2). Given a set of i.i.d samples {xi}ni=1, we train transformer networks
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u1,θ, . . . , uK,θ by minimizing the high-order empirical conditional flow matching loss (3.9):

L̂K
CFM =

1

n

n∑
i=1

K∑
k=1

1

T − t0

∫ T

t0

E
X0∼N(0,I)

[
∥(µ(k)

t xi + σ
(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22

]
dt.

We evaluate the performance of estimators u1,θ, . . . , uK,θ through the K-order flow matching risk:

Definition 4.2 (High-Order Flow Matching Risk). Let uk,θ be the estimator of the k-th order
velocity field uk. Let Θ be the collection of parameters of u1,θ, . . . , uK,θ. We define the flow
matching risk RK(Θ) as the sum of the expected mean-squared difference between uk,θ and uk:

RK(Θ) :=
K∑
k=1

1

T − t0

∫ T

t0

E
x∼p0t

[
∥uk(x, t)− uk,θ(x, t)∥22

]
dt,

where the density function p0t represents the probability density function of X(0)
t (Definition 3.1).

Further, we assume the path coefficients of the affine conditional flow preserve regularity.

Assumption 4.2 (Path Regularity). Consider the affine conditional flow ψt(x|X(0)
1 ) = µtX

(0)
1 +

σtx, the k-th derivative of path coefficients σt and µt are continuous on [t0, T ], where t0, T ∈ [0, 1].

Assuming k-th order velocity Lipschitz continuity and affine path regularity (Assumption 4.2),
the following theorem presents the upper bounds on estimation error RK(Θ) with sample size n.

Theorem 4.2 (High-Order Velocity Estimation with Transformer). Assume Assumption 4.1 and
Assumption 4.2. Let ûk,θ ∈ T h,s,r

R be the estimator of the k-th order velocity field uk trained by
minimizing the high-order empirical conditional flow matching loss (3.9). Let Θ̂ be the collection
of parameters of ûk,θ for k ∈ [K]. Suppose the k-th order velocity field uk(x, t) is Lk Lipschitz
for all k = 0, . . . , K − 1. Suppose we choose the transformers as in Theorem 4.1, then

E
{xi}ni=1

[
RK(Θ̂)

]
= O

(
n− 1

10d · (log n)10dx
)
,

where d is the feature dimension.

Proof. Please see Section E for a detailed proof.

4.3 High-Order Distribution Estimation
Based on the K-order velocity estimation result in Theorem 4.2, we further analyze the distribu-
tion estimation rate for K-order flow matching transformer. The next theorem presents the upper
bounds on the expectation of 2-Wasserstein distance between the target and estimated distribution
induced by estimators uk,θ trained by optimizing the empirical conditional loss (3.9).
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Theorem 4.3 (High-Order Distribution Estimation under 2-Wasserstein Distance). Assume As-
sumption 4.1 and Assumption 4.2. Let P̂K

T be the estimated distribution at time T . Then, it holds

E
{xi}ni=1

[W2(P̂
K
T , P

K
T )] = O

(
n− 1

18d · (log n)6dx
)
,

where d is the feature dimension.

Proof. Please see Section F for a detailed proof.

4.4 High-Order Minimax Optimal Estimation
We show that the K-order flow matching transformers achieves nearly minimax optimal rate:

Theorem 4.4 (Minimax Optimality of High-Order Flow Matching Transformers). Assume that
the target density function satisfies q(x1) ∈ Hβ([−1, 1]dx , B) and q(x1) ≥ C for some constant C.
Then, under the setting of 18d(β+1) = dx+2β, the distribution estimation rate of flow matching
transformers presented in Theorem 4.3 matches the minimax lower bound of Hölder distribution
class in 2-Wasserstein distance up to a log n and Lipchitz constants factors.

Proof. Please see Section G for a detailed proof.

Remark 4.1 (Comparison with Existing Works). Flow matching with ReLU networks is nearly
minimax-optimal on Besov densities in W2 [Fukumizu et al., 2024], and kernel methods achieve
comparable rates in W1 [Kunkel and Trabs, 2025]. We extend these results to all orders K and
to the major powerhouse in practice: transformer architectures. Our analysis proves that flow-
matching transformers attain near-minimax rates on Hölder densities in W2 with assuming Lip-
schitz velocities, subsuming the first-order case at K = 1. Please see Section I for a detailed
analysis.

5 Discussions, Limitations, and Open Questions
Section 3 and Section 4 establish a unified theoretical framework for High-Order Flow Matching
and offer a sharp statistical analysis of High-Order Flow Matching transformers. As discussed in
Section 3.3, this framework subsumes the not only original first-order [Lipman et al., 2024, 2022]
but also many high-order flow matching models [Chen et al., 2025, Cao et al., 2025]. Furthermore,
the established sharp statistical rates provide rigorous support for all models under this unified
framework. This broad theoretical guarantee, covering both first-order and high-order approaches,
helps explain the empirical success of the high-order flow models.

While our analysis provides foundational statistical guarantees, the compelling empirical evidence
and our current theoretical framework present an intriguing open question: it does not elucidate a
significant improvement in statistical rates with increasing order K. In addition, while our frame-
work offers a unified perspective for numerous empirical studies, these often assume the validity
of the consistency constraint within the marginalization process (Theorem 3.3). Our research
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indicates that the general validity of this constraint, or indeed the derivation of similar conclu-
sions under broader conditions, remains an open question. We identify three primary directions
for future work stemming from these considerations: (i) Sampling Efficiency: The High-Order
Flow Matching framework enables the use of a K-th order Taylor expansion sampler. This sam-
pler achieves a local truncation error of O(hK+1) per step, with all K velocity components uk,θ

evaluable in parallel. Future empirical work should investigate whether this high-order accuracy
per step translates into practical benefits, such as requiring fewer function evaluations for a target
sample quality or faster convergence to high-fidelity samples. (ii) Stable Approximation Error
Propagation: In standard flow matching using Runge-Kutta Methods, the sequential nature means
approximation errors in uθ evaluations may propagate and amplify within a single step as they
influence subsequent intermediate calculations. However, our K-order flow matching approach
solves the ODE without this feedback loop, which might leads to more stable error propagation.
(iii) Relaxing the Consistency Constraint: A significant direction for future research involves ex-
ploring methods to either remove or relax the consistency constraint highlighted in Theorem 3.3.

6 Concluding Remarks
In this work, we introduce High-Order Flow Matching, a generalized theoretical framework for
flow-based generative modeling. Specifically, we characterize the relationship between flow ψt,
K-order velocity field ft, probability path ρt through governing ODE and mass conservation for-
mula (Definition 3.1 and Theorem 3.2). Then we purpose the K-order flow matching loss and
establish a tractable equivalent conditional K-order flow matching loss (Theorem 3.4) via high-
order marginalization trick (Theorem 3.3). Further, we prove that High-Order Flow Matching
subsumes standard first-order Flow Matching for K = 1 (Proposition 3.1) and providing a uni-
fied theoretical foundation for understanding emerging high-order flow model approaches such
as HOMO [Chen et al., 2025]. Our second primary contribution is the first rigorous statistical
analysis of this High-Order Flow Matching framework when implemented with transformers. We
establish sharp approximation, estimation, and distribution learning rates (Theorems 4.1 to 4.3),
and demonstrate their near-minimax optimality up to logarithmic factors (Theorem 4.4).

Related Work. We defer an extended discussion on related work to Section A due to page limits.

Impact Statement
This theoretical work advances the fundamental understanding of flow matching generative mod-
els and presents no foreseeable negative social impacts.
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A Related Work
In the following, we discuss the recent success of the techniques used in our work. We begin
with the universal approximation theory of transformers. Then, we discuss the recent theoretical
progress in flow matching framework, including approximation, estimation and minimax optimal-
ity theories.

Universality of Transformers. The universality of transformers refers to their capability to ap-
proximate arbitrary sequence-to-sequence functions with any desired precision. Yun et al. [2019]
first prove this capability with deep stacks of self-attention and feed-forward layers through the
idea of contextual mapping by assuming a minimal separation among all hidden representations.
Subsequent work by [Alberti et al., 2023] extend the guarantee to variants that employ sparse
attention mechanisms. Building upon these works, Hu et al. [2025a], Kajitsuka and Sato [2023]
show that a transformer block with a single self-attention layer is sufficient to achieve universal
approximation.

Flow Matching and High-Order Flow Matching. Flow Matching generative modeling [Lip-
man et al., 2024, Gat et al., 2024, Chen and Lipman, 2023, Lipman et al., 2022, Liu et al., 2022]
has advanced the state-of-the-art in various fields and applications, including images [Esser et al.,
2024] , speeches [Le et al., 2023], audios [Polyak et al., 2025] and biomedical data [Huguet
et al., 2024]. These standard flow matching frameworks learn first-order trajectory dynamics
(velocity field) to smoothly transport a simple source distribution to the target data distribution.
However, there is a growing interest for the role of high-order dynamics in generative modeling
with improved accuracy and efficiency, which has been applied in various empirical explorations.
For instance, Cao et al. [2025] integrate special relativistic mechanics to enhance the stability of
generative modeling by supervising on second-order dynamics (acceleration) to ensure sample
velocities remain bounded within a safe limit. Similarly, Liang et al. [2025] also augment flow
auto-regressive transformers with second-order supervision by capturing complex dependencies
through high-order dynamics.

Statistical Rates and Minimax Optimality of Flow Models. Benton et al. [2023], Albergo
and Vanden-Eijnden [2022] measure the convergence of flow models by the L2-risk of the ve-
locity field but omit explicit convergence rates. Jiao et al. [2024] work in the latent space of an
autoencoder and derive explicit convergence rates for flow models; however, they do not consider
the smoothness of the target density class. Fukumizu et al. [2024] demonstrate that flow matching
achieves nearly minimax-optimal distribution estimation rates in Besov density function spaces
under the 2-Wasserstein distance using ReLU network architectures. Kunkel and Trabs [2025]
establish similar results under the 1-Wasserstein distance by employing the kernel density esti-
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mators. In this work, we provide the first theoretical evidence of the minimax optimality of any
order flow matching using transformer architectures, and our results recover the first order case
as a special instance. Notably, we show that flow matching transformers (FMTs) achieve nearly
minimax optimal rates in Hölder density function spaces under the 2-Wasserstein distance with-
out imposing the Lipschitz continuity assumption on the velocity field. Please see Section I for a
detailed analysis.

B Supplementary Background: Transformer Block
In this section, we introduce the transformer network architecture that we use throughout the
paper. Our notation follows [Hu et al., 2025b, 2024]. To begin with, given a matrix Z ∈ Rd×L,
we denote the i-th column and the j-th row by Z:i and Zj: respectively.

Transformer Block. Let F (SA) : Rd×L → Rd×L denote the self-attention layer. We use h and s
to denote the number of heads and hidden dimension in the self-attention layer, and then we have

F (SA) (Z) := Z +
h∑

i=1

W i
O · (W i

VZ) Softmax
[
(W i

KZ)
⊤(W i

QZ)
]
, (B.1)

where Softmax(·) is the column-wise softmax function, W i
V ,W

i
K ,W

i
Q ∈ Rs×d, and W i

O ∈ Rd×s

are the weight matrices. Let r be the MLP dimension. Then, we define the feed-forward layer:

F (FF)(Z) := Z +W2ReLU(W1Z + b1) + b2, (B.2)

where W1 ∈ Rr×d and W2 ∈ Rd×r are weight matrices, and b1 ∈ Rr, and b2 ∈ Rd are bias.

Definition B.1 (Transformer Block). We define a transformer block of h-head, s-hidden dimen-
sion, r-MLP dimension, and with positional encoding E ∈ Rd×L as

Fh,s,r (Z) := F (FF) (F (SA) (Z + E)
)
: Rd×L 7→ Rd×L.

Now, we define the transformer networks as compositions of transformer blocks.

Definition B.2 (Transformer Network Function Class). Let T h,s,r denote the transformer net-
work function class where each function f ∈ T h,s,r is a composition of transformer blocks Fh,s,r,
i.e.,

T h,s,r := {fT : Rd×L 7→ Rd×L | fT = Fh,s,r ◦ · · · ◦ Fh,s,r}.

Flow Matching Transformer. Following from common architecture of diffusion transformers
(DiTs) [Hu et al., 2025b, 2024, Peebles and Xie, 2023], we adopt the reshape layerR that converts
a vector input x ∈ Rdx into the sequential matrix input format Z ∈ Rd×L for transformer with
dx = d · L.
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Definition B.3 (Reshape Layer). The reshape layer R(·) : Rdx → Rd×L transforms dx-
dimensional input into a d×L matrix. Specifically, for any dx = i× i image input, R(·) converts
it into a sequence representation with feature dimension d := p2 (where p ≥ 2) and sequence
length L := (i/p)2. Further, we define the reverse reshape (flatten) layer R−1(·) : Rd×L → Rdx as
the inverse of R(·).

Finally, we define the following transformer network function class with the reshape layer. To
simplify, we define WKQ := (WK)

⊤WQ and WOV := WOWV .

Definition B.4 (Transformer Network Function Class with Reshape Layer T h,s,r
R ). The trans-

former network class with reshape layer T h,s,r
R (CT , C

2,∞
KQ , CKQ, C

2,∞
OV , COV , CE, C

2,∞
F , CF , LT )

satisfies:
• T h,s,r

R := {R−1 ◦ fT ◦R : Rdx → Rdx | fT ∈ T h,s,r};

• Transformer network output bound: supZ ∥fT (Z)∥2 ≤ CT ;

• Parameter bound in F (FF): max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞
F , max{∥W1∥2, ∥W2∥2} ≤

C2
F ;

• Parameter bound in F (SA): ∥WKQ∥2 ≤ CKQ, ∥WOV ∥2 ≤ COV , ∥WKQ∥2,∞ ≤ C2,∞
KQ ,

∥WOV ∥2,∞ ≤ C2,∞
OV ,

∥∥E⊤
∥∥
2,∞ ≤ CE , where 2,∞-norm follows ∥·∥2,∞ := maxj∈[L] ∥Z:j∥2;

• Lipschitz of fT ∈ T h,s,r: ∥fT (Z1)− fT (Z2)∥F ≤ LT ∥Z1 − Z2∥F , for any Z1, Z2 ∈ Rd×L.

We remark that these norm bounds are critical to quantify the complexity of the network class.
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C Proofs in Section 3
In this section, we formalize the high-order flow matching. Section C.1 establishes the
flow–velocity equivalence through an ordinary differential equation argument (Theorem 3.1). Sec-
tion C.2 ensures the mass conservation in high-order flows (Theorem 3.2). Section C.3 derives
the marginalization property (Theorem 3.3). Section C.4 shows the gradient equivalence between
the flow matching and conditional flow matching objectives (Theorem 3.4). Finally, Section C.5
unifies the framework by proving that K-order flow matching collapses to the standard first-order
case (Proposition 3.1).

C.1 Proof of Theorem 3.1
In this section, we present the main proof of Theorem 3.1.

Theorem C.1 (Theorem 3.1 Restated: Flow–Velocity Equivalence via ODE). Define the class
of structured k-order velocity fields as those of the form:

ft(yt) = col(u1(x(0)t , t), . . . , uK(x
(0)
t , t)) ∈ RKd, yt = col(x(0)t , . . . , x

(K−1)
t ) ∈ RKd,

where uk : RKd × [0, 1] → is locally lipschitz in yt and continues in t for any k ∈ [K]. Suppose
the velocity fields u1(x(0)t , t), . . . , uK(x

(0)
t , t) satisfy total derivative constraints (3.3). Then, for

any initial condition y0 ∈ RKd, the ODE d
dt
yt = ft(yt) exists a unique local solution yt, which

defines a K-times differentiable flow ψt(x) := x
(0)
t and satisfy dk

dtk
ψt(x) = x

(k)
t for all k ∈ [K].

Conversely, any K-times differentiable flow ψt : Rd → Rd defines a velocity field ft via (3.1).

Proof. We prove both directions:

From velocity field ft to flow ψt: Let y0 = (x
(0)
0 , . . . , x

(K−1)
0 )⊤ ∈ RKd be any initial condition.

Then, the system (3.1)

d

dt
yt = ft(yt), with initial condition y0,

is a standard autonomous first-order ODE on RKd with a Lipschitz right-hand side. By the Pi-
card–Lindelöf theorem, there exists a unique local solution yt. Let us define the flow ψt(x) := x

(0)
t

and since yt is differentiable, ψt is differentiable. By repeatedly applying the total derivative con-
straint (3.3), we can establish that dk

dtk
ψt(x) = x

(k)
t for all k ∈ [K]. Specifically, for any k ∈ [K],

we have:

x
(k)
t = uk(x

(0)
t , t)

(
By definition of the ODE

)
=

d

dt
uk−1(x

(0)
t , t)

(
By (3.3)

)
=

d

dt
x
(k−1)
t

(
By definition of the ODE

)
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=
dk

dtk
ψt(x).

(
By induction

)
This confirms that the k-th order velocity field corresponds exactly to the k-th time derivative of
the flow ψt.

From flow ψt to velocity field ft: Suppose there is a K-times differentiable flow ψt. Define

yt = [ψt(x),
d

dt
ψt(x), . . . ,

dK−1

dtK−1
ψt(x)]

⊤,

ft(yt) = col(
d

dt
ψt(x), . . . ,

dK

dtK
ψt(x)).

Then, by direct differentiation:

d

dt
yt = ft(yt).

This completes the proof of the bidirectional equivalence.

C.2 Proof of Theorem 3.2
In this section, we provide the proof of Theorem 3.2.

Theorem C.2 (Theorem 3.2 Restated: Mass Conservation of High-Order Flow). Let yt =

(x
(0)
t , . . . , x

(K−1)
t )⊤ ∈ RKd. Let velocity field ft(yt) = (u1(x

(0)
t , t), . . . , uK(x

(0)
t , t))⊤ ∈ RKd,

where uk(x(0)t , t) is locally Lipschitz and integrable for all k ∈ [K]. Let ρt : RKd → R be a
time-varying probability density over the extended state Yt ∈ RKd follows Definition 3.1. Then
the following statements are equivalent:

1. The pair (ft, ρt) satisfies the Liouville’s equation on the extended space:

∂

∂t
ρt(y) +∇y · (ρt(y)ft(y)) = 0, for all t ∈ [0, 1).

2. Following Definition 3.1, the probability law of Yt evolves under the flow:

d

dt
Yt = ft(Yt), with Y0 ∼ ρ0, Yt ∼ ρt. (C.1)

For some arbitrary probability path ρt, we define ft generates ρt if (C.1) holds.

Proof. We prove both directions:

From ODE (C.1) to Liouville’s Equation: Let ϕ : RKd → R be any smooth function with
compact support (i.e., a test function). We first compute the time derivative of following quantity

E[ϕ(Yt)] =
∫
ϕ(y)ρt(y)dy. (C.2)
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Since the Yt satisfy the ODE (C.1), the derivative of the expectation becomes:

d

dt
E[ϕ(Yt)] = E[

d

dt
ϕ(Yt)]

(
By swiching the expectation and derivation

)
= E[∇yϕ(Yt) ·

d

dt
Yt]

(
By the chain rule

)
= E[∇yϕ(Yt) · ft(Yt)]

(
By the ODE (C.1)

)
=

∫
∇yϕ(y) · ft(y)ρt(y)dy

= −
∫
ϕ(y)∇ · (ft(y)ρt(y))dy.

(
By the integration by parts

)
Therefore, for any test function ϕt, it holds∫

d

dt
ϕ(y)ρt(y) + ϕ(y)∇ · (ft(y)ρt(y))dy = 0,

which leads to Liouville’s equation

d

dt
ρt(y) +∇y · (ρt(y)ft(y)) = 0.

From Liouville’s Equation to ODE (C.1): According to the equivalence between the flow ψt and
its associated velocity field ft (Theorem 3.1), the ODE (C.1) admits a unique local solution ỹt,
which defines a unique flow ψ̃t. By the pushforward formula and the definition in Definition 3.1,
this flow induces the distribution Ỹt ∼ ρ̃t. Moreover, ρ̃t satisfies the Liouville equation associated
with the velocity field ft.

Since the Liouville equation admits a unique solution in the space of probability densities starting
from the same initial distribution ρ0, and both ρt and ρ̃t solve the same continuity equation with
initial condition ρ0, we conclude that ρt = ρ̃t. This completes the proof.

C.3 Proof of Theorem 3.3
This section presents the proof of Theorem 3.3.

Theorem C.3 (Theorem 3.3 Restated: Marginalization). Recall that for some arbitrary proba-
bility path ρt, ft generates ρt if Yt ∼ ρt for all t ∈ [0, 1). Let Z be a random variable, if ft(x|z) is
conditionally integrable and generates the conditional probability path ρt(·|z), then the marginal
velocity ft :=

∫
ft(y|z)pt(z|y)dz generates the marginal probability path pt.

Proof. Applying the mass conservation follows Theorem 3.2, we only need to verify that the ft
and ρt satisfy high-order continuity equation, i.e. Liouville’s Equation:

d

dt
ρt(y) =

∫
d

dt
ρt|Z(y|z)pZ(z)dz

(
By the law of total probability

)
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=

∫
−∇ · [ft(y|z)ρt(y|z)]pZ(z)dz

(
By Liouville’s equation

)
= −∇ ·

∫
ft(y|z)ρt(y|z)pZ(z)dz

(
By switching differentiation and integration

)
= −∇ ·

∫
[ft(y|z)ρt(y|z)pZ(z)/ρt(y)] · ρt(y)dz

= −∇ · [ft(y)ρt(y)].
(
By the definition of ft(y) and the Bayes’ rule

)
This completes the proof.

C.4 Proof of Theorem 3.4
In this section, we prove Theorem 3.4.

Theorem C.4 (Theorem 3.4 Restated: Gradient Equivalence of Losses). Let the Flow Matching
loss LK

FM be defined as in Definition 3.2, and the Conditional Flow Matching loss LK
CFM be defined

as in (3.5). Then, when D(·, ·) is a Bregman divergence, the gradients of the two losses coincide:

∇LK
FM(θ) = ∇LK

CFM(θ).

Proof. Similar to the Theorem 4 of [Lipman et al., 2024], the result follows from the Marginaliza-
tion Trick (Theorem 3.3) and the expectation-swapping property of Bregman divergences (3.6).
A direct computation then shows that:

∇θLK
FM(θ) = ∇θ E

t,Yt∼ρt
D(ft(Yt), f

θ
t (Yt))

(
By the definition of Flow Matching Loss

)
= E

t,Yt∼ρt
∇θD(ft(Yt), f

θ
t (Yt))

(
By swaping the expectation and the gradient computation

)
= E

t,Yt∼ρt
∇vD(ft(Yt), f

θ
t (Yt))∇θf

θ
t (Yt)

(
By the chain rule

)
= E

t,Yt∼ρt
∇vD( E

Z∼pz|t(·|y)
[ft(Yt|Z)], f θ

t (Yt))∇θf
θ
t (Yt)(

By the marginalization trick follows Theorem 3.3
)

= E
t,Yt∼ρt

E
Z∼pz|t(·|y)

[∇vD([ft(Yt|Z)], f θ
t (Yt))∇θf

θ
t (Yt)](

By the property of Bregman divergence follows (3.6)
)

= E
t,Yt∼ρt

E
Z∼pz|t(·|y)

[∇θD([ft(Yt|Z)], f θ
t (Yt))]

(
By the chain rule

)
= ∇θ E

t,Z,Yt∼ρt|Z(·|Z)
[D(ft(Yt|Z), f θ

t (Yt))]
(
By the Bayes’ rule

)
= ∇θLK

CFM(θ).

This completes the proof.

C.5 Proof of Proposition 3.1
This section gives the main proof of Proposition 3.1.
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Proposition C.1 (Proposition 3.1 Restated: Reduction to Standard First-Order Flow Matching).
When K = 1, the entire K-order flow matching framework, including the governing ODE, the
probability path definition via the continuity equation, and the K-order flow matching objective,
becomes precisely equivalent to the standard first-order Flow Matching framework as detailed in
[Lipman et al., 2022, 2024].

Proof. The equivalence follows by setting K = 1 in the definitions of our K-order framework.

1. State Variable and ODE: From Definition 3.1, when K = 1, Yt = X
(0)
t = Xt. The

ODE system d
dt
Yt = ft(Yt) simplifies to d

dt
Xt = u1(Xt), which is the governing ODE for

standard flow models ([Lipman et al., 2022, 2024]). The K-order velocity field ft becomes
u1.

2. Probability Path and Continuity Equation: The K-order mass conservation formula
(Theorem 3.2) for K = 1 reduces to the standard Mass Conservation Formula (Theorem 2
in [Lipman et al., 2024]).

3. Loss Objective: The K-order flow matching loss (Definition 3.2), which targets matching
f θ
t to ft simplifies to matching only the u1 component: Et,Xt∼pt [D(u1t (Xt), u

1,θ
t (Xt))]. This

is the standard Flow Matching objective (Eq. (5) in [Lipman et al., 2022]). The conditional
formulation via Theorem 3.3 similarly simplifies to the conditional Flow Matching loss used
for standard FM.

Thus, all core components of the K-order framework align with standard Flow Matching.
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D Proof of Theorem 4.1
In this section, we prove Theorem 4.1 following steps similar to the velocity approximation in Sec-
tion J: (i) applying the universal approximation of transformers (ii) leveraging the sub-Gaussian
property of the target distribution to bound the approximation error of the K order velocity field.

Organizations. Section D.1 introduces helper lemmas. Section D.2 presents the main proof.

D.1 Auxiliary Lemmas
In this section, we introduce four auxiliary lemmas. In Lemma D.1, we give the lower-bound and
upper-bounds on pt(x). In Lemma D.2, we state the classical Gaussian tail bounds. In Lemma D.3,
we approximate the k-th order velocity field over a bounded domain. To control the error in
unbounded regions, we exploit the sub-gaussian assumption of the target distribution q(x1) in
Lemma D.4.

We begin with the bounds on pt(x).

Lemma D.1 (Bounds on the Density Function, Lemma A.9 of [Fu et al., 2024]). Recall that
pt(x) =

∫
Rdx pt(x|x1)q(x1)dx1 and pt(x|x1) = 1

σdx
t (2π)dx/2

exp(−∥x− µtx1∥22/2σ2
t ). Assume

Assumption 4.1. Then, there exist a positive constant C4 such that

C4

σdx
t

· exp
(
−∥x∥22 + 1

σ2
t

)
≤ pt(x) ≤

C1

(µ2
t + C2σ2

t )
dx/2

· exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
.

Then, we apply standard results for Gaussian tail bounds. We remark that the main purpose of
stating Lemma D.2 is to streamline the main proof of Theorem 4.1 in Section D.2.

Lemma D.2 (Gaussian Tail Bounds). Consider a random vector X := (X1, . . . , Xdx)
⊤ ∼

N(0, σ2
t I). Let ωdx := 2π

dx
2 /Γ(dx

2
). Then, the following two inequalities hold:∫

∥X∥>D

exp

(
−∥X∥22

2σ2
t

)
dX ≤ ωdxσ

2
tD

dx−2 exp

(
−D2

2σ2
t

)
,∫

∥X∥>D

∥X∥22 exp
(
−∥X∥22

2σ2
t

)
dX ≤ ωdx · (σ2

tD
dx + dxσ

4
tD

dx−2) exp

(
−D2

2σ2
t

)
.

Proof. We first express the integral in spherical coordinates for X∫
∥X∥>D

exp
(
−∥X∥22/2σ2

t

)
dX = ωdx

∫ ∞

D

rdx−1 exp

(
− r2

2σ2
t

)
dr.
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Let JD :=
∫∞
D
rdx−1 exp

(
− r2

2σ2
t

)
dr. Setting u := rdx−2 and dv := r exp

(
− r2

2σ2
t

)
dr, we have

du = (dx − 2)rdx−3dr, and v = −σ2
t exp

(
− r2

2σ2
t

)
.

Then,

J(D) =

[
− rdx−2σ2

t exp

(
− r2

2σ2
t

)]∞
r=D

+ (dx − 2)σ2
t

∫ ∞

D

rdx−3 exp

(
− r2

2σ2
t

)
dr (D.1)

= σ2
tD

dx−2 exp

(
−D2

2σ2
t

)
+ (dx − 2)σ2

t

∫ ∞

D

rdx−3 exp

(
− r2

2σ2
t

)
dr

(
By integration by parts

)
≤ σ2

tD
dx−2 exp

(
−D2

2σ2
t

)
.

(
By dropping the second term

)

We obtain the final bound∫
∥X∥>D

exp

(
−∥X∥22

2σ2
t

)
dX ≤ ωdxσ

2
tD

dx−2 exp

(
−D2

2σ2
t

)
.

This completes the proof of the first inequality. For the second inequality, we have∫
∥X∥>D

∥X∥22 exp
(
−∥X∥22

2σ2
t

)
)dX

= ωdx

∫ ∞

D

r2rdx−1 exp

(
− r2

2σ2
t

)
dr

= ωdx

∫ ∞

D

rdx+1 exp

(
− r2

2σ2
t

)
dr.

Let K(D) :=
∫∞
D
rdx+1 exp

(
− r2

2σ2
t

)
dr, u := rd and dv := r exp

(
− r2

2σ2
t

)
dr. Then,

du = dxr
dx−1dr, and v = −σ2

t exp

(
− r2

2σ2
t

)
.

Therefore, the integration by parts gives

K(D)

=

[
− rdxσ2

t exp

(
− r2

2σ2
t

)]∞
r=D

+

∫ ∞

D

σ2
t exp

(
− r2

2σ2
t

)
dxr

dx−1dr

= σ2
tD

dx exp

(
−D2

2σ2
t

)
+ dxσ

2
t

∫ ∞

D

rdx−1 exp

(
− r2

2σ2
t

)
dr.
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Recalling (D.1)

JD :=

∫ ∞

D

rdx−1 exp

(
− r2

2σ2
t

)
dr, and JD ≤ σ2

tD
dx−2 exp

(
−D2

2σ2
t

)
,

we have

K(D)

= σ2
tD

dx exp

(
−D2

2σ2
t

)
+ dxσ

2
t JD

≤ σ2
tD

dx exp

(
−D2

2σ2
t

)
+ dxσ

2
t · (σ2

tD
dx−2 exp

(
−D2

2σ2
t

)
)

(
By the bound on JD

)
=
(
σ2
tD

dx + dxσ
4
tD

dx−2
)
exp

(
−D2

2σ2
t

)
.

Then we obtain the final bound∫
∥X∥>D

∥X∥22 exp
(
−∥X∥22

2σ2
t

)
)dX ≤ ωdx · (σ2

tD
dx + dxσ

4
tD

dx−2) exp

(
−D2

2σ2
t

)
.

This completes the proof of the second inequality.

Applying the universal approximation of transformers (Theorem H.2), we first approximate the
k-th order velocity field uk over a bounded domain with transformers uk,θ.

Lemma D.3 (Approximate k-th Order Flow with Transformers). Assume Assumption 4.1. Let
D be an absolute positive constant. Then, for any x ∈ [−I, I]dx , t ∈ [0, 1] and ϵ ∈ (0, 1), there
exist a transformer uk,θ(x, t) ∈ T h,s,r

R such that∫ 1

0

∫
[−I,I]dx

pt(x) · ∥uk,θ(x, t)− uk(x, t)∥22dxdt ≤ ϵ2,

for all k ∈ [K]. Furthermore, the parameter bounds in the transformer network class satisfy

CKQ, C
2,∞
KQ = O(I4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O(Iϵ−1Lk−1);CE = O(1);CT = O(Lk−1)

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. By specifying the target function as f = uk and the transformer-based estimator as
g = uk,θ in Theorem H.2, and applying the bound pt(x) ≤ 1, the proof follows Theorem H.2
since the reshape layer (Definition B.3) does not harm the uniform continuity. Further, by the
Lipschitzness of the k-th order flow, we have ∥uk(x, t)∥2 ≤ Lk−1. Then, the parameter bounds in
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transformer network follow Lemma H.4, where we set the model output bound CT = O(Lk−1).
This completes the proof.

To control the approximation error over an unbounded domain, we introduce tail bounds for the
probability flow pt(x) and the weighted squared norms of the uk, given by ∥uk(x, t)∥22 · pt(x).

Lemma D.4 (Truncation of x, Modified from Lemma A.1 of [Fu et al., 2024]). Assume As-
sumption 4.1. Suppose the k-th order velocity field uk(x, t) is Lipschitz continuous for all
k = 0, . . . , K − 1. Let Lk denote the Lipschitz constant of uk, and then the velocity fields are
uniformly bounded as

∣∣uk(x, t)∣∣ ≤ Lk−1 for any k ∈ [K]. Then, for any R1, t > 0 and k ∈ [K],
the following hold∫

∥x∥∞>R1

pt(x)dx ≲ Rdx−2
1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
,∫

∥x∥∞>R1

∥uk(x, t)∥22 · pt(x)dx ≲ L2
k−1R

dx−2
1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
.

Proof. For the first inequality, it follows∫
∥x∥∞>R1

pt(x)dx

≤
∫
∥x∥∞>R1

exp

(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma D.1

)
≤
∫
∥x∥2>R1

exp

(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx−2

1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)

For the second inequality, it follows∫
∥x∥∞≥R1

∥uk(x, t)∥22 · pt(x)dx

≲
∫
∥x∥∞≥R1

∥uk(x, t)∥22 · exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma D.1

)
≲
∫
∥x∥∞≥R1

L2
k−1 exp

(
−C2∥x∥22

2(µ2
t + C2σ2

t )

)
dx

(
By the Lipchitzness of the k-th order flow

)
≲ L2

k−1R
dx−2
1 exp

(
− C2R

2
1

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)

This completes the proof.
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D.2 Main Proof of Theorem 4.1
We now present the formal proof of Theorem 4.1.

Theorem D.1 (Theorem 4.1 Restated: K-order Velocity Approximation with Transformers).
Assume Assumption 4.1. Suppose the k-th order velocity field uk(x, t) is Lk-Lipschitz for
all k ∈ 0, . . . , K − 1 in ℓ2-distance. Let ϵ ∈ (0, 1) be the precision parameter satisfying
ϵ ≤ O(N−β) for some N ∈ N and smoothness parameter β > 0. Then, there exists transformers
u1,θ(x, t), . . . , uK,θ(x, t) ∈ T h,s,r

R such that for any x ∈ Rdx and t ∈ [0, 1], it holds:

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt = O
(
N−2β · (logN)

dx
2
−1
)
.

Further, for all k ∈ [K], the parameter bounds in transformer network class satisfy

CKQ, C
2,∞
KQ = O(N2β(2d+1)(logN)2d+1); COV , C

2,∞
OV = O(N−β);

CF , C
2,∞
F = O(Nβ

√
logNLk−1); CE = O(1); CT = O(Lk−1),

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof of Theorem 4.1. For u1,θ(x, t), . . . , uK,θ(x, t) ∈ T h,s,r
R , we set the transformer output bound

CT = O(Lk−1) for the k-th network and let R3 and ϵlow be two positive numbers to be chosen.

First, we decompose the target into three components and bound each of them

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt

=
K∑
k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt︸ ︷︷ ︸
(T1)

+
K∑
k=1

∫ T

t0

∫
∥x∥∞≤R3

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt︸ ︷︷ ︸
(T2)

.

• Bound on (T1). It holds

(T1)

=
K∑
k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt
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≤ 2
K∑
k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk,θ(x, t)∥22 · pt(x)dxdt+ 2
K∑
k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk(x, t)∥22 · pt(x)dxdt(
By expanding ℓ2-norm

)
≲

K∑
k=1

L2
k−1

∫ T

t0

∫
∥x∥∞>R3

pt(x)dxdt+
K∑
k=1

∫ T

t0

∫
∥x∥∞>R3

∥uk(x, t)∥22 · pt(x)dxdt(
By CT = O(Lk−1)

)
≲

K∑
k=1

L2
k−1

∫ T

t0

∫
∥x∥∞>R3

pt(x)dxdt
(
By the Lipschitzness of the k-th order flow

)

≲ Rdx−2
3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

) K∑
k=1

L2
k−1

∫ T

t0

dt.
(
By Lemma D.4

)

≤ Rdx−2
3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

) K∑
k=1

L2
k−1.

(
By t0, T ∈ (0, 1)

)
• Bound on (T2). For any ϵ ∈ (0, 1), it holds

(T2) =
K∑
k=1

∫ T

t0

∫
∥x∥∞≤R3

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt ≤ Kϵ2.
(
By Lemma D.3

)
By the upper-bound on (T1) and (T2), we have

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt

= (T1) + (T2)

≲ Rdx−2
3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

) K∑
k=1

L2
k=1 +Kϵ2

≲ max

{
Rdx−2

3 exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

)
, ϵ2
}
.

Finally, for some N ∈ N and β > 0, we set

R3 :=

√
4β(µ2

t + C2σ2
t ) logN

C2

and ϵ := N−β.

This gives

K∑
k=1

∫ T

t0

∫
Rdx

∥uk,θ(x, t)− uk(x, t)∥22 · pt(x)dxdt = O
(
N−2β · (logN)

dx
2
−1
)
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The transformer parameter bounds follow Lemma D.3 with I = O(
√
logN) and ϵ = N−β > 0:

CKQ, C
2,∞
KQ = O(N2β(2d+1)(logN)2d+1);COV , C

2,∞
OV = O(N−β);

CF , C
2,∞
F = O(Nβ

√
logNLk−1);CE = O(1);CT = O(Lk−1), (D.2)

This completes the proof.
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E Proof of Theorem 4.2
In this section, we derive the estimation rate of the K order flow matching using transformers. We
decompose the proof of Theorem 4.2 into the following three parts due to its complexity.

• Step 0: Preliminaries. We introduce several essential definitions, including the K order
conditional flow matching loss, K order empirical risk and their domain truncation. These
definitions are the extensions from the velocity estimation analysis (see Section I.3 and
Section L).

• Step 1: Controlling Error from Loss Function outside of the Truncated Domain. By
leveraging the sub-Gaussian tail bound and the Lipschitz continuity of the k-th order veloc-
ity field, we derive an upper bound on the loss function outside of the truncated domain in
Lemma E.1.

• Step 2: Upper Bound on the Covering Number. We present a unified upper bound on the
covering number that holds across K transformer networks u1,θ, . . . , uK,θ in Lemma E.2.

• Step 3: Generalization Error. We apply the covering number technique to bound the
deviation between the K order empirical risk and the K order true risk in Lemma E.3.

Organizations. Section E.1 includes preliminaries on the framework of estimators’ quality eval-
uation. Section E.2 introduces auxiliary lemmas. Section E.3 presents the main proof.

E.1 Preliminaries

In this section, we consider affine conditional ψt(x|X(0)
1 ) = µtX

(0)
1 + σtx following Section 2.

Given k-th order velocity estimator uk,θ, we aim to bound the flow matching risk RK(Θ):

RK(Θ) :=
K∑
k=1

1

T − t0

∫ T

t0

E
x∼p0t

[∥uk,θ(x, t)− uk(x, t)∥22]dt,

where the density function pt and the k-th order flow are induced by the flow ψt (Definition 3.1).

In practice, we use the K order conditional flow matching loss to train u1,θ, . . . , uK,θ ∈ T h,s,r
R .

Definition E.1 (High-Order Conditional Flow Matching Loss). Let q be the ground truth dis-
tribution and the normal distribution N(0, I) be the source distribution p. Considering affine
conditional flows ψt(x|X1) = µtX1 + σtx, we define the K order conditional flow matching loss:

LK
CFM(Θ) :=

K∑
k=1

1

T − t0

∫ T

t0

E
X

(0)
1 ∼q,X

(0)
0 ∼p

[∥(µ(k)
t X

(0)
1 + σ

(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22]dt.
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Further, we define the K order loss function

ℓK(x;u
1,θ, . . . , uK,θ) :=

K∑
k=1

1

T − t0

∫ T

t0

E
X

(0)
0 ∼p

[∥(µ(k)
t x+ σ

(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22]dt.

Given a set of i.i.d sample {xi}ni=1, we obtain transformers u1,θ, . . . , uK,θ by optimizing the em-
pirical conditional flow matching loss:

L̂K
CFM :=

1

n

n∑
i=1

K∑
k=1

1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22]dt.

Then, we define the K-order empirical risk:

Definition E.2 (High-Order Empirical Risk). Let uk,θ be the estimator of the k-th order velocity
field uk. Further, consider i.i.d training samples {xi}ni=1 and empirical conditional flow matching
loss L̂K

CFM = 1
n

∑n
i=1 ℓK(xi; ·). Then, we define the K order empirical risk:

R̂K(Θ) :=
1

n

n∑
i=1

ℓK(xi;u
1,θ, . . . , uK,θ)− 1

n

n∑
i=1

ℓK(xi;u
1, . . . , uK).

Remark E.1. Let RK(ft) be the ground truth inputs of the high-order risk; that is, uk,θ = uk for
any k ∈ [K]. Then, by the definition of high-order velocity field in Definition 3.1, RK(ft) = 0
since ft(yt) = (u1, . . . , uK) is the collection of K order ground truth velocity fields. Further,
the gradient equivalence Theorem 3.4 implies that RK(Θ) = RK(Θ) − RK(ft) = LK

CFM(Θ) −
LCFM(ft).

Remark E.2. We use L̂K′
CFM and R̂′

K to denote the conditional flow matching loss and empirical
risk with training samples {x′i}ni=1. Then, by the i.i.d assumption on the training sample, we have
E{x′

i}ni=1
[L̂K′

CFM(Θ)] = LCFM(Θ), and therefore E{x′
i}ni=1

[R̂′
K(Θ)] = RK(Θ).

To obtain finite covering number, we introduce the K truncated loss and truncated risk.

Definition E.3 (Domain Truncation of High-Order Loss and Risk). Let D > 0 be constant.
Given the K order conditional flow matching loss ℓK(x;u1,θ, . . . , uK,θ) defined in Definition E.1,
we define its truncated counterparts on a bounded domain D := [−D,D]dx by

ℓtruncK (x;u1,θ, . . . , uK,θ) := ℓK(x;u
1,θ, . . . , uK,θ)1{∥x∥∞ ≤ D}.

Given the K order conditional flow matching risk and the K order empirical risk, we define

Rtrunc
K (Θ) := RK(Θ)1{∥x∥∞ ≤ D}, R̂trunc

K (Θ) := R̂K(Θ)1{∥x∥∞ ≤ D}.
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E.2 Auxiliary Lemmas
We follow the proof of velocity estimation in Section L.2 and Section L.3 to bound the K order
flow matching estimation error. Since direct computation of risk is infeasible, we first decompose
the K order flow matching risk RK into four terms. Then, we leverage the sub-Gaussian property
(Assumption I.1) and the Lipschitzness of transformer network class (Definition B.2) to bound
each term. Specifically, we introduce three lemmas to bound

1. the error from the domain truncation of loss function class (Lemma E.1),

2. the log covering number of loss function class (Lemma E.2), and

3. the generalization error bound (Lemma E.3).

Risk Decomposition. For simplicity, we shorthand RK(u
1,θ, . . . , uK,θ) with RK . Let {x′i}ni=1 be

a different set of i.i.d samples independent of the training sample {xi}ni=1. Then we decompose:

E
{xi}ni=1

[RK ] = E
{xi}ni=1

[ E
{x′

i}ni=1

[R̂′
K − R̂′ trunc

K ]]︸ ︷︷ ︸
(I)

+ E
{xi}ni=1

[ E
{x′

i}ni=1

[R̂′ trunc
K − R̂trunc

K ]]︸ ︷︷ ︸
(II)

+ E
{xi}ni=1

[R̂trunc
K − R̂K ]︸ ︷︷ ︸
(III)

+ E
{xi}ni=1

[R̂K ]︸ ︷︷ ︸
(IV)

,

where we use the fact that E{xi}ni=1
[R̂K(Θ)] = RK(Θ) (Remark E.1). This decomposition follows

standard statistical learning theory technique, formulated in [Hu et al., 2025b, Fu et al., 2024].

High-Order Truncation Loss. We begin with the bounds on term (I) and term (III).

Lemma E.1 (Upper Bound on the High-Order Truncation Error). Let u1,θ, . . . , uK,θ ∈ T h,s,r
R be

transformers in Theorem 4.1. Then, for any t ∈ [t0, T ] it holds

E
x
[
∣∣ℓK(x;u1,θ, . . . , uK,θ)− ℓtruncK (x;u1,θ, . . . , uK,θ)

∣∣] ≲ KDdx exp

(
−1

2
C2D

2

)
max

k
{L2

k}.

Proof. By Theorem 4.1, we have transformers output bounds CT = O(Lk−1) for all k.

For all k ∈ [K], we define

ℓk(x;u
k,θ) :=

1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)− (µ

(k)
t x+ σ

(k)
t X

(0)
0 )∥22]dt

ℓtrunck (x;uk,θ) :=
1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)− (µ

(k)
t x+ σ

(k)
t X

(0)
0 )∥22]dt1{∥x∥∞ ≤ D}.
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Then, it holds

E
x
[
∣∣ℓk(x;uk,θ)− ℓtrunck (x;uk,θ)

∣∣] (E.1)

= E
x
[
∣∣ℓk(x;uk,θ)1[∥x∥ ≥ D]

∣∣] (
By Definition E.3

)
=

1

T − t0

∫ T

t0

∫
∥x∥>D

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)− (µ

(k)
t x+ σ

(k)
t X

(0)
0 )∥22]q(x)dxdt(

By Definition E.1
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)∥22 + ∥µ(k)

t x+ σ
(k)
t X

(0)
0 ∥22]q(x)dxdt(

By expanding the ℓ2-norm
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

E
X0∼N(0,I)

[∥uk,θ(X(0)
t , t)∥22 + ∥µ(k)

t x+ σ
(k)
t X

(0)
0 ∥22] exp

(
−1

2
C2∥x∥22

)
dxdt(

By Assumption I.1
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

E
X0∼N(0,I)

[max
k

{L2
k}+ ∥µ(k)

t x+ σ
(k)
t X

(0)
0 ∥22] exp

(
−1

2
C2∥x∥22

)
dxdt(

By CT = O(maxk{Lk})
)

≲
1

T − t0

∫ T

t0

∫
∥x∥≥D

(max
k

{L2
k}+ (σ

(k)
t )2dx + (µ

(k)
t )2∥x∥22) exp

(
−1

2
C2∥x∥22

)
dxdt(

x0 ∼ N(0, I)
)

≲
Ddx−2 exp

(
−1

2
C2D

2
)

T − t0

∫ T

t0

(
max

k
{L2

k}+ (σ
(k)
t )2dx

)
dt+

Ddx exp
(
−1

2
C2D

2
)

T − t0

∫ T

t0

(µ
(k)
t )2dt(

By Lemma D.2
)

≲ Ddx exp

(
−1

2
C2D

2

)
max

k
{L2

k}.
(
By Assumption I.2

)

Therefore,

E
x
[
∣∣ℓK(x;u1,θ, . . . , uK,θ)− ℓtruncK (x;u1,θ, . . . , uK,θ)

∣∣]
≤

K∑
k=1

E
x
[
∣∣ℓk(x;uk,θ)− ℓtrunck (x;uk,θ)

∣∣] (
By triangle inequality

)
≲ KDdx exp

(
−1

2
C2D

2

)
max

k
{L2

k}.
(
By (E.1)

)

This completes the proof.

Covering Number of High-Order Loss Function Class with Transformers. The next lemma
extends Lemma L.2 to its higher-order counterpart.
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Lemma E.2 (Covering Number Bounds for S(D), Lemma K.2 of [Hu et al., 2025b], Theorem
A.17 of [Edelman et al., 2022]). Let ϵc > 0. We define the loss function class by S(D) :=
{ℓK(x;u1,θ, . . . , uK,θ) : D → R | u1,θ, . . . , uK,θ ∈ T h,s,r

R }. Further, we define the norm of loss
functions by ∥ℓK∥∞D := maxx∈[−D,D]dx |ℓK |. Then, under transformer parameter configuration in
Theorem 4.1 the ϵc-covering number of S(D) with respect to ∥·∥∞D satisfies:

logN (ϵc,S(D), ∥·∥∞D) ≤ O
( log (nLT )

ϵ2c
D2Nβ(16d+12)(logN)8d+8

)
.

Proof. We first derive the log covering number of transformers u1,θ, . . . , uK,θ in Theorem 4.1.
Then, we extend the results to K order loss function class.

• Log-Covering Number of Transformers Network Class. From (D.2), for all k ∈ [K], we
have

CKQ, C
2,∞
KQ = O(I4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O(Iϵ−1Lk−1);CE = O(1);CT = O(Lk−1),

where I = O(
√
logN) and ϵ = N−β > 0 some N ∈ N and β > 0.

By Lemma L.2, the bounds on log-covering number follow

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ α2 log (nLT )

ϵ2c

(
d

2
3 (C2∞

F )
4
3 + d

2
3 (2(CF )

2COVC
2,∞
KQ )

2
3 + 2

(
(CF )

2C2,∞
OV

) 2
3

)3
≲
α2 log (nLT )

ϵ2c

(
I4/3ϵ−4/3︸ ︷︷ ︸
(C2,∞

F )
4
3

+ I4/3ϵ−4/3︸ ︷︷ ︸
(CF )4/3

ϵ2/3︸︷︷︸
(COV )2/3

I(8d+4)/3ϵ−8d/3−4/3︸ ︷︷ ︸
(C2,∞

KQ )2/3

+ I4/3ϵ−4/3︸ ︷︷ ︸
(CF )

4
3

ϵ2/3︸︷︷︸
(C2,∞

OV )
2
3

)3
≲
α2 log (nLT )

ϵ2c
· (I(8d+8)/3ϵ−8d/3−2)3

=
α2 log (nLT )

ϵ2c
· I8d+8ϵ−8d−6.

By Lemma L.2, we have

α := (CF )
2COV (1 + 4CKQ)(D + CE)

≲ I2ϵ−2︸ ︷︷ ︸
(CF )2

· ϵ︸︷︷︸
(COV )

· I4d+2ϵ−4d−2︸ ︷︷ ︸
(CKQ)

·(D + CE)
(
By the definition of α

)
= DI4d+4ϵ−4d−3.

Altogether, for all uk,θ ∈ T h,s,r
R , we have

logN (ϵc, T h,s,r
R , ∥·∥2) ≲

log (nLT )

ϵ2c
D2I16d+16ϵ−16d−12.
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Further, by ∥ · ∥∞ ≤ ∥ · ∥2, we have

logN (ϵc, T h,s,r
R , ∥ · ∥∞) ≲

log (nLT )

ϵ2c
D2I16d+16ϵ−16d−12. (E.2)

for all uk,θ ∈ T h,s,r
R .

• Log-Covering Number of Loss Function Class. Let δ > 0. Let u := {u1,θ, . . . , uK,θ} and
u := {u1,θ, . . . , uK,θ} be two sets of transformers network satisfying ∥uk,θ − us,θ∥∞ ≤ δ on
domain x ∈ [−D,D]dx for all uk,θ ∈ u and us,θ ∈ u. Further, let ψ⋆

t,k denote the ground
truth k-th order conditional velocity field (Definition E.1):

ψ⋆
t,k := µ

(k)
t x+ σ

(k)
t X

(0)
0 .

Then, the distance between two K order conditional loss functions ℓK,1(x;u
1,θ, . . . , uK,θ)

and ℓK,2(x;u
1,θ, . . . , uK,θ) follows:∣∣ℓK,1(x;u
1,θ, . . . , uK,θ)− ℓK,2(x;u

1,θ, . . . , uK,θ)
∣∣ (E.3)

=
1

T − t0

∣∣∣∣∣
K∑
k=1

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ − ψ⋆
t,k∥22]dt−

K∑
s=1

∫ T

t0

E
X0∼N(0,I)

[∥us,θ − ψ⋆
t,k∥22]dt

∣∣∣∣∣(
By Definition E.1

)
≤

K∑
k=1

1

T − t0

∣∣∣∣∫ T

t0

E
X0∼N(0,I)

[(uk,θ + uk,θ − 2ψ⋆
t,k)

⊤(uk,θ − uk,θ)]dt

∣∣∣∣ (By triangle inequality
)

≤
K∑
k=1

δ

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uk,θ + uk,θ − 2ψ⋆
t,k∥]dt

(
By ∥uk,θ − uk,θ∥∞ ≤ δ

)

≤
K∑
k=1

δ

T − t0

∫ T

t0

√
2 E
X0∼N(0,I)

[∥uk,θ + uk,θ∥22 + 2∥ψ⋆
t,k∥22]dt

(
By Jensen’s inequality

)

≲
K∑
k=1

δ

T − t0

∫ T

t0

√
max

k
{L2

k}+ 2∥ψ⋆
t,k∥22dt

(
By CT = O(maxk{Lk})

)

≲
K∑
k=1

δmaxk{Lk}
T − t0

∫ T

t0

dt
(
By the Lipschitzness of k-th order flow

)
≲ δmax

k
{Lk}.

Finally, we extend the log covering number to the loss function class S(D) by setting

ϵ′c := Ω
(
ϵcmax

k
{Lk}

)
.

This gives

logN (ϵ′c,S(D), ∥·∥∞D) ≤ logN (ϵc, T h,s,r
R , ∥ · ∥∞).

(
By (E.3)

)
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Therefore,

logN (ϵ′c,S(D), ∥·∥∞D)

≤ logN (ϵc, T h,s,r
R , ∥ · ∥∞)

≲
log (nLT )

ϵ2c
D2I16d+16ϵ−16d−12 (

By (E.2)
)

= O
( log (nLT )

(ϵ′c)
2

D2I16d+16ϵ−16d−12max
k

{L2
k}
)
.

(
By the definition of ϵ′c

)
Finally, we substitute I = O(

√
logN) and ϵ = N−β > 0. This completes the proof.

Generalization Bound. Based on covering number bounds results in Lemma E.2, we now analyze
the upper bound of generalization error

∣∣∣E{xi}ni=1
[Rtrunc

K (Θ̂)− R̂trunc
K (Θ̂)]

∣∣∣.
Lemma E.3 (Generalization Bound on K Order Flow Matching Risk). For ϵc > 0, let N :=
N (ϵc,S(D), ∥·∥∞D) be the covering number of function class of loss S(D) following Lemma E.2.
Let Θ̂ be the collection of parameters of transformers trained by optimizing LCFM(Θ) following
Definition E.1 with i.i.d training samples {xi}ni=1. Then we bound the generalization error:

E
{xi}ni=1

[
Rtrunc

K (Θ̂)− R̂trunc
K (Θ̂)

]
≤ R̂trunc

k (Θ̂) +O(
1

n
logN + ϵc).

Proof. Let ûk,θ ∈ T h,s,r
R be the approximator of the k-th velocity field uk obtained from minimiz-

ing the high-order empirical conditional flow matching loss:

L̂K
CFM :=

1

n

n∑
i=1

K∑
k=1

1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22]dt.

Further, we define

Rtrunc
k (ûk,θ) :=

1

T − t0

∫ T

t0

E
x∼pt

[∥uk(x, t)− uk,θ(x, t)∥22]1{∥x∥∞ ≤ D}dt,

and

R̂trunc
k (ûk,θ)

:=
1

n

n∑
i=1

1

T − t0

∫ T

t0

E
X

(0)
0 ∼p

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 )− uk,θ(X

(0)
t , t)∥22]dt · 1{∥xi∥∞ ≤ D}

− 1

n

n∑
i=1

1

T − t0

∫ T

t0

E
X

(0)
0 ∼p

[∥(µ(k)
t xi + σ

(k)
t X

(0)
0 )− uk(X

(0)
t , t)∥22]dt · 1{∥xi∥∞ ≤ D}
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Since every network configurations and log covering number are identical across all K order
velocity fields from Theorem 4.1 and Lemma E.2, for any k ∈ [K], Lemma L.5 extends to∣∣∣∣ E

{xi}ni=1

[Rtrunc
k (ûk,θ)− R̂trunc

k (ûk,θ)]

∣∣∣∣ ≤ 1

2
E

{xi}ni=1

[Rtrunc
k (ûk,θ)] +O(

1

n
logN + ϵc).

Therefore, ∣∣∣∣ E
{xi}ni=1

[Rtrunc
k (Θ̂)− R̂trunc

k (Θ̂)]

∣∣∣∣
≤

K∑
k=1

∣∣∣∣ E
{xi}ni=1

[Rtrunc
k (ûk,θ)− R̂trunc

k (ûk,θ)]

∣∣∣∣ (
By the triangle inequality

)

≲
K∑
k=1

1

2
E

{xi}ni=1

[Rtrunc
k (ûk,θ)] +O(

1

n
logN + ϵc)

(
By Lemma L.5

)
=

1

2
· E
{xi}ni=1

[Rtrunc
K (Θ̂)] +O(

1

n
logN + ϵc).

This implies

E
{xi}ni=1

[Rtrunc
k (Θ̂)] ≤ 2 · R̂trunc

k (Θ̂) +O(
1

n
logN + ϵc).

Finally, we conclude that

E
{xi}ni=1

[Rtrunc
k (Θ̂)− R̂trunc

k (Θ̂)] ≤ R̂trunc
k (Θ̂) +O(

1

n
logN + ϵc).

This completes the proof.

E.3 Main Proof of Theorem 4.2
We now present the main proof of Theorem 4.2.

Theorem E.1 (Theorem 4.2 Restated: High-Order Velocity Estimation with Transformer). As-
sume Assumption 4.1 and Assumption 4.2. Let ûk,θ ∈ T h,s,r

R be the estimator of the k-th order
velocity field uk trained by minimizing the high-order empirical conditional flow matching loss
(3.9). Let Θ̂ be the collection of parameters of ûk,θ for k ∈ [K]. Suppose the k-th order velocity
field uk(x, t) is Lk Lipschitz for all k = 0, . . . , K − 1. Suppose we choose the transformers as in
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Theorem 4.1, then

E
{xi}ni=1

[RK(Θ̂)] = O
(
n− 1

10d · (log n)10dx
)
,

where d is the feature dimension.

Proof of Theorem 4.2. Let {x′i}ni=1 be a different set of i.i.d samples independent of the training
sample {xi}ni=1. Further, we use R̂′ to denote the empirical risk with samples {x′i}ni=1.

Then, we decompose E{xi}ni=1
[RK(Θ̂)] as:

E
{xi}ni=1

[
RK(Θ̂)

]
= E

{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′

K(Θ̂)− R̂′ trunc
K (Θ̂)

]]
︸ ︷︷ ︸

(I)

+ E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′ trunc

K (Θ)
]
− R̂trunc

K (Θ̂)
]

︸ ︷︷ ︸
(II)

+ E
{xi}ni=1

[
R̂trunc

K (Θ̂)− R̂K(Θ̂)
]

︸ ︷︷ ︸
(III)

+ E
{xi}ni=1

[
R̂K(Θ̂)

]
︸ ︷︷ ︸

(IV)

,

Then, we bound each term and incorporate them to obtain the bound on the estimation error.

• Bound on (I) and III. By Lemma E.1, (I) and (III) are upper bounded by

(I), (III) ≲ KDdx exp

(
−1

2
C2D

2

)
max

k
{L2

k}.

• Bound on (II). By the generalization error bound (Lemma E.3), we have

(II)

= E
{xi}ni=1

[ E
{x′

i}ni=1

[R̂′trunc
K (Θ)]− R̂trunc

K (Θ)]

= E
{xi}ni=1

[Rtrunc
K (Θ̂)− R̂trunc

K (Θ̂)]
(
By Remark E.2

)
≤ E

{xi}ni=1

[R̂trunc
K (Θ̂)] +O(

1

n
logN + ϵc)

(
By Lemma E.3

)
≲ (IV) +Ddx exp

(
−1

2
C2D

2

)
max

k
{L2

k}+O(
1

n
logN + ϵc)

(
By Lemma E.1

)
• Bound on (IV). Recall Remark E.1, Remark E.2. We have R̂K(Θ) := L̂CFM(Θ)−L̂CFM(ft),

where the collection of parameters of K transformers Θ̂ is trained by optimizing L̂CFM(Θ).
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Therefore, it holds

R̂K(Θ̂) ≤ L̂CFM(Θ)− L̂CFM(ft) = R̂K(Θ).

Then, for any velocity estimator Θ, it holds

E
{xi}ni=1

[R̂K(Θ̂)] ≤ E
{xi}ni=1

[R̂K(Θ)] = RK(Θ). (E.4)

This implies

(IV) ≤ RK(Θ) ≲ N−2β · (logN)
dx
2
−1.

(
By Theorem 4.1

)
Altogether, the estimation error is upper bounded by

E
{xi}ni=1

[RK(Θ̂)] (E.5)

= (I) + (II) + (III) + (IV)

≲ Ddx exp

(
−1

2
C2D

2

)
︸ ︷︷ ︸

(T1)

+O(
1

n
logN + ϵc)︸ ︷︷ ︸
(T2)

+N−2β · (logN)
dx
2
−1︸ ︷︷ ︸

(T3)

,

where

logN = O
( log (nLT )

ϵ2c
D2Nβ(16d+12)(logN)8d+8

)
.

(
By Lemma E.2

)

Let γ := 16d + 12. Then, we set N := nη1/(γβ), ϵc := n−η2 and D :=
√
(2η3 log n)/C2, where

η1, η2, η3 ≥ 0 are constants satisfying 0 ≤ η1 + 2η2 < 1.2 This gives

(T1) = Ddx exp

(
−1

2
C2D

2

)
≲ n−η3(log n)

dx
2 .

Further, we have

logN = O(nη1+2η2(log n)8dx+10),

implying

(T2) = O(
1

n
logN + ϵc) = O(nη1+2η2−1(log n)8dx+10 + n−η2).

2The constraint 0 ≤ η1 + 2η2 < 1 is imposed in order to ensure (T2) converges as n → ∞.
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Further,

(T3) = n− 2η1
γ (log n)

dx
2
−1.

Then, (E.5) becomes

E
{xi}ni=1

[RK(Θ)]

≲ (T1) + (T2) + (T3)

= O
(
n−min

{
1−(η1+2η2), η2,

2η1
γ

}
· (log n)8dx+10

)
.

For any η1 and η2 satisfying

0 < η1 + 2η2 < 1,

we consider solving

min
{
1− (η1 + 2η2), η2,

2η1
γ

}
.

The linear programming problem has simple solution

1− (η1 + 2η2) = η2 =
2η1
γ
.

This gives

η1 =
γ

γ + 6
, and η2 =

2

γ + 6
,

and η1 + 2η2 ∈ (0, 1)is satisfied for any η1, η2 > 0.

Finally, by γ = 16d+ 12, these free parameters achieves balance and gives

E
{xi}ni=1

[RK(Θ̂)] ≲ O
(
n− 2

γ+6 · (log n)8dx+10
)
= O

(
n− 1

8d+9 · (log n)8dx+10
)

This completes the proof.
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F Proof of Theorem 4.3
We now present the main proof of Theorem 4.3.

Theorem F.1 (Theorem 4.3 Restated: High-Order Distribution Estimation under 2-Wasserstein
Distance). Assume Assumption 4.1 and Assumption 4.2. Let P̂K

T be the estimated distribution
at time T . Then, it holds

E
{xi}ni=1

[W2(P̂
K
T , P

K
T )] = O

(
n− 1

18d · (log n)6dx
)
,

where d is the feature dimension.

Proof of Theorem 4.3. We first consider two general ODE functions that describe the ground truth
velocity field and estimated velocity field respectively:

d

dt
yt =


u1(x

(0)
t , t)

u2(x
(0)
t , t)
...

uK(x
(0)
t , t)

 := f(y, t),
d

dt
yt =


u1,θ(x

(0)
t , t)

u2,θ(x
(0)
t , t)

...
uK,θ(x

(0)
t , t)

 := f θ(y, t),

where the first d rows of yt ∈ RKd construct x(0)t ∈ Rd.

According to the existence uniqueness theorem of ODEs, these two functions can induce another
following two corresponding flows ϕ(·) ∈ RKd and ϕθ(·) ∈ RKd defined for t ≥ s that satisfy:

d

dt
ϕ(y, s, t) = f(ϕ(y, s, t), t), ϕ(y, s, s) = y,

d

dt
ϕθ(y, s, t) = f θ(ϕθ(y, s, t), t), ϕθ(y, s, s) = y.

We define the first d rows of ϕ(·) construct the flow function ψt(x) and the first d rows of ϕθ(·)
construct the flow function ψθ

t (x). By applying Lemma M.2, it holds that

ϕθ(y, t0, T )− ϕ(y, t0, T ) =

∫ T

t0

Dϕθ(ϕ(y, t0, s), s, T )(f
θ(ϕ(y, t0, s), s)− f(ϕ(y, t0, s), s))ds.

We extract the first d rows of left-hand-side and it holds:

ψθ(x, t0, T )− ψ(x, t0, T ) =

∫ T

t0

Dϕθ(ϕ(y, t0, s), s, t))[: d](f
θ(ϕ(y, t0, s), s)− f(ϕ(y, t0, s), s))ds,

where Dϕθ(ϕ(y, t0, s), s, t))[: d] denotes the first d rows of the Jacobian matrix.

We then bound ψθ(x, t0, T )− ψ(x, t0, T ) by using similar techniques in proof of Theorem I.4. It
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shows that

∂

∂t
∥Dϕθ(ϕ(y, t0, s), s, t))[: d]∥2

≤ ∥ ∂
∂t
Dϕθ(ϕ(y, t0, s), s, t))[: d]∥2

(
By triangle inequality

)
= ∥Du1,θ(ψθ(ψ(x, t0, s), s, t)Dϕ

θ(ϕ(y, t0, s), s, t))[: d])∥2
(
By chain rule

)
≤ LT ∥Dϕθ(ϕ(y, t0, s), s, t))[: d])∥2.

(
By Lipschitz constant of transformer

)
Therefore,

∥Dϕθ(ϕ(y, t0, s), s, t))[: d])∥2 ≲ exp{
∫ t

s

LT du} ≤ exp{
∫ 1

0

LT du} =:M.
(
By Lemma M.1

)
Now we have

∥ψθ(x, t0, T )− ψ(x, t0, T )∥22

≤M2

∫ T

t0

(f θ(ϕ(y, t0, s), s)− f(ϕ(y, t0, s), s))
2ds

(
By Lemma M.1

)
=M2(

∫ T

t0

(
K∑
k=1

∥uk,θ(ψ(x, t0, s), s)− uk(ψ(x, t0, s), s)∥2)ds)2
(
By definition of fθ

)

≤M2

∫ T

t0

(
K∑
k=1

∥uk,θ(ψ(x, t0, s), s)− uk(ψ(x, t0, s), s)∥22)ds.
(
By Cauchy Schwarz inequality

)
Then, we take expectation with x ∼ p0t0 on both sides

E
x∼p0t0

[∥ψθ(x, t0, T )− ψ(x, t0, T )∥22]

≤M2

K∑
k=1

E
x∼p0t0

[

∫ T

t0

∥uk,θ(ψ(x, t0, s), s)− uk(ψ(x, t0, s), s)∥22ds]

=M2(T − t0)RK(Θ).
(
By definition of higher order risk in Definition 4.2

)
Finally, we bound the 2-Wasserstein distance between the estimated and true distributions follow-
ing Section M. By using the definition of the 2-Wasserstein metric, it follows that

W2(P̂
K
T , P

K
T ) ≤

√
E

x∼pt0

[∥ψθ(x, t0, T )− ψ(x, t0, T )∥22] ≲
√

RK(Θ)

Then,

E
{xi}ni=1

[W2(P̂
K
T , P

K
T )] ≲

√
RK(Θ̂)
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We apply the high-order velocity estimation results in Theorem 4.2

E
{xi}ni=1

[RK(Θ̂)] = O
(
n− 1

8d+9 · (log n)8dx+10
)
.

This implies

E
{xi}ni=1

[W2(P̂
K
T , P

K
T )] ≲ E

{xi}ni=1

[
√

RK(Θ)] = O
(
n− 1

16d+18 · (log n)4dx+5
)
.

This completes the proof.
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G Proof of Theorem 4.4
Recall the Hölder density function class and its minimax optimal rate under 2-Wasserstein dis-
tance:

Lemma G.1 (Lemma N.2 Restated: Modified from Theorem 3 of [Niles-Weed and Berthet,
2022]). Consider the task of estimating a probability distribution P (x1) with density function
belonging to the space

P :=
{
q(x1)|q(x1) ∈ Hβ([−1, 1]dx , B), q(x1) ≥ C

}
,

Then, for any r ≥ 1, β > 0 and dx > 2, we have

inf
P̂

sup
q(x1)∈P

E
{xi}ni=1

[Wr(P̂ , P )] ≳ n− β+1
dx+2β ,

where {xi}ni=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible
estimators constructed from the data.

We now give the formal proof of Theorem 4.4.

Theorem G.1 (Theorem 4.4 Restated: Minimax Optimality of High-Order Flow Matching
Transformers). Assume that the target density function satisfies q(x1) ∈ Hβ([−1, 1]dx , B) and
q(x1) ≥ C for some constant C. Then, under the setting of 18d(β+1) = dx+2β, the distribution
estimation rate of flow matching transformers presented in Theorem 4.3 matches the minimax
lower bound of Hölder distribution class in 2-Wasserstein distance up to a log n and Lipchitz
constants factors.

Proof of Theorem 4.4. Since the bounded support [−1, 1]dx guarantees the sub-Gaussian property
in Assumption I.1, the distribution estimation Theorem 4.3 holds under q(x1) ∈ Hβ([−1, 1]dx , B):

E
{xi}ni=1

[W2(P̂T , PT )] ≲ O

(
n− 1

18d · (log n)6dx
)
.

Then, by Lemma N.2, the distribution rates matches the minimax lower bound up to a log n and
Lipschitz constant factors under the setting

18d(β + 1) = dx + 2β.

This completes the proof.

Remark G.1. Since dx = d · L, the condition 18d(β + 1) = dx + 2β implies

d(18β + 18− L) = 2β and β(18d− 2) = d(L− 18),
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the transformesr achieve minimax optimal rate with reshape layer such that 18 ≤ L ≤ 18β + 18.
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H Preliminaries: Universal Approximation of Transformers
Prior works [Hu et al., 2025a, 2024, Kajitsuka and Sato, 2023, Yun et al., 2019] develop the
universal approximation of transformers for continuous functions. Here we revisit these methods
to establish a foundation for our analysis of k-th order flow matching transformers. Specifically,
we revisit (i) the ability of the transformer function class (defined in Section B) to approximate
any continuous function on a compact domain with arbitrary error, (ii) the parameter norm bounds
required to achieve the universal approximation. Notably, controlling the magnitude of these norm
bounds is essential for subsequent analysis on the velocity estimation error and distribution error.

Background: Contextual Mapping. Recall the reshape layer Definition B.3. Let Z ∈ Rd×L

represent input embeddings. whereZ:,k ∈ Rd denotes the k-th token (column) of eachZ sequence.
Further, given M embeddings Z(1), . . . , Z(M) ∈ Rd×L , we say Z(i) is the i-th sequence for
i ∈ [M ]. Then, we define the vocabulary corresponding to the i-th sequence at the k-th index in
Definition H.1.

Definition H.1 (Vocabulary). We define the i-th vocabulary set for i ∈ [M ] by V(i) =⋃
k∈[L] Z

(i)
:,k ⊂ Rd, and the whole vocabulary set V is defined by V =

⋃
i∈[N ] V(i) ⊂ Rd.

In line with prior works [Hu et al., 2025a, 2024, Kajitsuka and Sato, 2023, Kim et al., 2022, Yun
et al., 2019], we assume the embeddings separateness to be (γmin, γmax, δ)-separated,

Definition H.2 (Tokenwise Separateness). Let Z(1), . . . , Z(M) ∈ Rd×L be embeddings. Then,
we say Z(1), . . . , Z(M) are tokenwise (γmin, γmax, δ)-separated if the following three conditions
hold.

1. For any i ∈ [M ] and k ∈ [n], ∥Z(i)
:,k∥ > γmin holds.

2. For any i ∈ [M ] and k ∈ [n], ∥Z(i)
:,k∥ < γmax holds.

3. For any i, j ∈ [M ] and k, l ∈ [n] if Z(i)
:,k ̸= Z

(j)
:,l , then ∥Z(i)

:,k − Z
(j)
:,l ∥ > δ holds.

Further, we say Z(1), . . . , Z(N) is (γ, δ)-separated when only conditions (ii) and (iii) hold. Also,
if only condition (iii) holds, we denote it as (δ)-separateness.

Building on the token separateness, we introduce the contextual mapping, that characterizes the
ability of transformers’ self-attention to capture the relationships among tokens across different
sequences. This allows transformers to utilize self-attention for full context representation.

Definition H.3 (Contextual Mapping). Let Z(1), . . . , Z(M) ∈ Rd×L be embeddings. Then, we
say a map T : Rd×L → Rd×L is a (γ, δ)-contextual mapping if the following two conditions hold:

1. For any i ∈ [M ] and k ∈ [L], it holds

∥T (Z(i)):,k∥ < γ.
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2. For any i, j ∈ [M ] and k, l ∈ [L] such that V(i) ̸= V(j) or Z(i)
:,k ̸= Z

(j)
:,l , it holds

∥T (Z(i)):,k − T (Z(j)):,l∥ > δ.

We introduce results from [Hu et al., 2025a] in Theorem H.1, which shows that a one-layer single-
head attention mechanism is a contextual mapping.

Helper Lemmas. Before presenting Theorem H.1, we restate several helper lemmas from [Hu
et al., 2025a, Kajitsuka and Sato, 2023] to simplify the proof.

Lemma H.1 (Boltz Preserves Distance, Lemma 1 of [Kajitsuka and Sato, 2023]). Given (γ, δ)-
tokenwise separated vectors z(1), . . . , z(M) ∈ Rn with no duplicate entries in each vector:

z(i)s ̸= z
(i)
t ,

where i ∈ [M ] and s, t ∈ [L], s ̸= t. Further, let

δ ≥ 4 lnn.

Then, the outputs of the Boltzmann operator has the following properties:∣∣Boltz (z(i))∣∣ ≤ γ, (H.1)∣∣Boltz (z(i))− Boltz
(
z(j)
)∣∣ > δ′ = ln2(n) · e−2γ (H.2)

for all i, j ∈ [M ], i ̸= j.

Lemma H.2 (Lemma 13 of [Park et al., 2021]). For any finite subset X ⊂ Rd, there exists at
least one unit vector u ∈ Rd such that

1

|X |2

√
8

πd
∥x− x′∥ ≤

∣∣u⊤ (x− x′)
∣∣ ≤ ∥x− x′∥,

for any x, x′ ∈ X .

Lemma H.2 shows the existence of a unit vector u ∈ Rd that bounds the inner product of the
difference between points in a finite subset X ⊂ Rd. Next, we restate the construction of rank-ρ
weight matrices in a self-attention layer following [Hu et al., 2025a] in Lemma H.3.
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Lemma H.3 (Construction of Weight Matrices, Lemma D.2 of [Hu et al., 2025a]). Given
(γmin, γmax, ϵ)-separated input embeddings Z(1), . . . , Z(M) ∈ Rd×L with finite vocabulary set
V ⊂ Rd. There exists rank-ρ weight matrices WK ,WQ ∈ Rs×d such that∣∣∣(WKva)

⊤ (WQvc)− (WKvb)
⊤ (WQvc)

∣∣∣ > δ,

for any δ > 0, any min (d, s) ≥ ρ ≥ 1 and any va, vb, vc ∈ V with va ̸= vb. In addition, the
matrices are constructed as

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where qi, q′i ∈ Rd are unit vectors that satisfy Lemma H.2 for at least one i, and pi, p
′
i ∈ Rs

satisfies ∣∣p⊤i p′i∣∣ = 5 (|V|+ 1)4 d
δ

ϵγmin

.

Any-Rank Attention is Contextual Mapping. The next lemma shows that the any rank self-
attention mechanisms of transformers serve as contextual mappings (Definition H.3).

Theorem H.1 (Any-Rank Attention is (γ, δ)-Contextual Mapping, Lemma 2.2 of [Hu et al.,
2025a]). Consider (γmin, γmax, ϵ)-tokenwise separated embeddings Z(1), . . . , Z(M) ∈ Rd×L and
vocabulary set V =

⋃
i∈[N ] V(i) ⊂ Rd. Let Z(1), . . . , Z(N) ∈ Rd×L be embedding sequences

with no duplicate word token in each sequence; that is, Z(i)
:,k ̸= Z

(i)
:,l , for any i ∈ [M ] and

k, l ∈ [L]. Then, there exists a 1-layer single head attention with weight matrices WO ∈ Rd×s and
WV ,WK ,WQ ∈ Rs×d, that is a (γ, δ)-contextual mapping for embeddings Z(1), . . . , Z(M) with

γ = γmax + ϵ/4, δ = exp
(
−5ϵ−1|V|4dκγmax logL

)
,

where κ = γmax/γmin.

We restate the proof of Theorem H.1 since it is crucial for subsequent analysis.

Proof. For completeness, we restate the proof from Lemma 2.2 of [Hu et al., 2025b].

The proof consists of two steps:

• Construct the Softmax Attention. We ensure that different input tokens are mapped to
unique contextual embeddings by configuring the weight matrices in Lemma H.3.

• Handle Identical Tokens in Different Contexts. We show that the construction from
Lemma H.3 are able to handle identical tokens in different contexts by applying Lemma H.1

We proceed the proof with these two steps.
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Step 1: Attention Construction. We show the construction of matrices: WK ,WQ,WO and WV .

• Weight Matrices WK and WQ. First, we construct WK and WQ by:

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d; WQ =

ρ∑
j=1

p′jq
′⊤
j ∈ Rs×d,

where pi, p′j ∈ Rs and qi, q′j ∈ Rd. In addition, let δ = 4 lnn and p1, p′1 ∈ Rs be an arbitrary
vector pair that satisfies ∣∣p⊤1 p′1∣∣ = (|V|+ 1)4 d

δ

ϵγmin

. (H.3)

• Weight Matrices WV and WO. Next, we construct WO ∈ Rd×s and WV ∈ Rs×d by:

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d, (H.4)

where q′′ ∈ Rd, q′′1 = q1 and p′′i ∈ Rs is some nonzero vector that satisfies

∥WOp
′′
i ∥ =

ϵ

4ργmax

. (H.5)

This can be accomplished, e.g., WO =
∑ρ

i=1 p
′′′
i p

′′
i
⊤ for any vector p′′′i which satisfies

∥p′′′i ∥ = ϵ/(4ρ2γmax∥p′′i ∥
2) for any i ∈ [ρ].

For simplicity, we define skk′ := Softmax
[(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)]
k′

.

Then, we combine the above weights construction and obtain

∥WO

(
WVZ

(i)
)
Softmax

[(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)]
∥ (H.6)

= ∥
L∑

k′=1

skk′WO

(
WVZ

(i)
)
∥ (

By the definition of skk′

)

≤
L∑

k′=1

∥skk′WO

(
WVZ

(i)
)
∥ (

By triangle inequality
)

≤ max
k′∈[L]

∥WO

(
WVZ

(i)
)
∥ (

By
∑L

k′=1 s
k
k′ = 1

)
≤ ϵ

4γmax

· max
k′∈[L]

∣∣∣q⊤Z(i)
:,k′

∣∣∣ (
By (H.4) and (H.5)

)
≤ ϵ

4γmax

· max
k′∈[L]

∣∣∣Z(i)
:,k′

∣∣∣ (
By Lemma H.2

)
≤ ϵ

4
.

(
By the (γmin, γmax, ϵ) separateness

)
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for i ∈ [M ] and k ∈ [L].

Step 2: The Case of Identical Tokens in Different Contexts. For the second part, we show that
with the contructed weight matricesWO,WV ,WK ,WQ, the attention layer distinguishes duplicate
input tokens with different context, Z(i)

:,k = Z
(j)
:,l with different vocabulary sets V(i) ̸= V(j).

We define a(i), a(j) as

a(i) =
(
WKZ

(i)
)⊤ (

WQZ
(i)
:,k

)
∈ Rn, a(j) =

(
WKZ

(j)
)⊤ (

WQZ
(j)
:,l

)
∈ Rn,

where a(i) and a(j) are tokenwise (γ, δ)-separated. Specifically, the following inequality holds

|a(i)k′ | ≤ (|V|+ 1)4 d
δ

ϵγmin

γ2max.

Since V(i) ̸= V(j) and there is no duplicate token in Z(i) and Z(j), we use Lemma H.1 and obtain∣∣Boltz (a(i))− Boltz
(
a(j)
)∣∣

=
∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣ (H.7)

> δ′

= (lnn)2e−2γ.

Additionally, using Lemma H.3 and (H.3), and assuming Z(i)
:,k = Z

(j)
:,l , we have∣∣∣(a(i))⊤ Softmax

[
a(i)
]
−
(
a(j)
)⊤

Softmax
[
a(j)
]∣∣∣ (H.8)

≤
ρ∑

i=1

γmax · (|V|+ 1)4
πd

8

δ

ϵγmin

·
∣∣(q⊤i Z(i)

)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣.

By combining (H.7) and (H.8), we have

ρ∑
i=1

∣∣(q⊤i Z(i)
)
Softmax

[
a(i)
]
−
(
q⊤i Z

(j)
)
Softmax

[
a(j)
]∣∣ > δ′

(|V|+ 1)4
ϵγmin

dδγmax

. (H.9)

Finally, using (H.5) and (H.9). we derive the lower bound of the difference between the self-
attention outputs of Z(i), Z(j) as follows:

∥F (SA)
S

(
Z(i)
)
:,k

−F (SA)
S

(
Z(j)

)
:,l
∥ > ϵ

4γmax

δ′

(|V|+ 1)4
ϵγmin

dδγmax

,

where δ = 4 lnL and δ′ = ln2(L)e−2γ with γ = (|V|+ 1)4 dδγ2max/(ϵγmin).
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This completes the proof.

Notably, Theorem H.1 shows that, for identical embeddings Z(i)
:,k = Z

(j)
:,l with distinct vocabularies

V(i) ̸= V(j), any-rank self-attention is able to distinguish two identical tokens in distinct contexts.

Universal Approximation of Transformer. We introduce the universal approximation result for
transformers with a single self-attention layer from [Hu et al., 2025a, Kajitsuka and Sato, 2023].

Theorem H.2 (Transformer Universal Approximation, Theorem B.1 of [Hu et al., 2025a] and
Proposition 1 of [Kajitsuka and Sato, 2023]). Let ϵ ∈ (0, 1) and p ∈ [1,∞). Let F (FF)

1 , F (FF)
2

and F (SA) be two feed-forward layers and a single-head self-attention layer with softmax function
(Definition B.2). Then, for any permuation equivarait, continuous function f on a bounded domain
and any ϵ, there exists a g(Z) = F (FF)

2 ◦F (SA) ◦F (FF)
1 (Z) ∈ T h,s,r

R such that dp(f(Z), g(Z)) < ϵ,
where dp := (

∫
∥f(Z)− g(Z)∥ppdZ)1/p, and ∥ · ∥p is the element-wise ℓp-norm.

Proof. Since the universal approximation of transformer over any bounded domain differs only by
scaling and shifting the transformer’s parameters in F (FF)

1 and F (FF)
2 , Hu et al. [2025a], Kajitsuka

and Sato [2023] prove Theorem H.2 assuming that the target function f is normalized on domain
[0, 1]d×L for simplicity. To support subsequent derivations of transformer parameter bounds re-
quired for achieving ϵ-precision (Lemma H.4), we provide the proof on a more general bounded
domains.

The proof consists of three steps: (i) Quantization by the First Feed-Forward Layer (ii) Contextual
Mapping by the Self-Attention Layer (iii) Memorization by the Second Feed-Forward Layer.

Let Ω := [−I, I]d×L be the domain of f . Without loss of generality, we consider I ∈ N.

• First Step Quantization. First, we define a grid GD:

GD :=
{
C ∈ Ω|Ct,k = −I + st,k

D
, st,k = 1, . . . , 2ID

}
, (H.10)

where D > 0 is the granularity of GD.
Then, for Z ∈ Ω, we construct a piece-wise constant function approximator:

g1(Z) :=
∑
C∈GD

f(C)1
{
Z ∈ C + [−1/D, 0)d×L

}
(H.11)

By the uniform continuity of f , for any ϵ > 0, there exist a D such that

dp(f(Z), g1(Z)) < ϵ/3. (H.12)

Then, we use a transformer to approximate g1(Z) using two feed forward layers and one
self-attention layer: FFF

2 ◦ FSA ◦ FFF
1 (Z). Next, we introduce the quantization function:
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1. Quantization Function. We define the quantization function quantD : R → R:

quantD(z) :=


−I z < −I
−I + 1/D −I ≤ z < −I + 1/D
...

...
I I − 1/D ≤ z.

By symmetry, we extend the quantization to quantd×L
D (Z) : Rd×L → Rd×L, where

quantD(z) is applied to every coordinates of Z. Then, by shifting and stacking step
functions [Yun et al., 2019], we use network f1(z) to approximate quantD(z)

f1(z) := −I +
I(D−1)∑
t=−ID

ReLU [z/δ − t/δD]− ReLU [z/δ − 1− t/δD]

D
≈ quantD(z).

(H.13)

Within Ω, the quantization quantd×L
D (z) outputs regions identical toC+[−1/D, 0)d×L

defined by the indicator function in (H.11). For z ∈ R \ [−I, I], we set the output to
zero by adding and subtracting the first and last step functions scaled by I:

fFF
1 (z) := f1(z)− I ·

(
ReLU [z/δ − I/δ]− ReLU [z/δ − 1− I/δ]

)
+ I ·

(
ReLU [−z/δ − I/δ]− ReLU [−z/δ − 1− I/δ]

)
. (H.14)

Then, fFF
1 (z) quanitzes [−I, I] into {−I+1/D, . . . , I} by taking sufficiently small δ.

2. Penalty Function. We define the penalty function penalty : R → R

penalty(z) =


−1 z < −I
0 z ∈ (−I, I]
−1 Z > I.

(H.15)

By taking sufficiently small δ, we approximate penalty(z) by

fFF
2+ (z) ≈ penalty+(z),

where

fFF
2 := ReLU [(z − I)/δ]− ReLU [(z − I)/δ + 1] (H.16)

+ReLU [(−z − I)/δ]− ReLU [(−z − I)/δ + 1] .
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Altogether, we define g2(Z) : Rd×L → Rd×L

g2(Z) =

(
quantd×L

D (Z) + I
)

2I
+

d∑
t=1

L∑
k=1

penalty(Zt,k); (H.17)

That is, the first term of g2(Z) quantizes [−I, I]d×L into GD (H.10), and then map it to
a normalized grid G◦

D ⊆ [0, 1]d×L. Specifically, G◦
D is a grid with granularity 2ID and

|G◦
D| = 2ID. On top of that, the second term of g2(Z) ensures non-positive outputs for any

Z ∈ Rd×L \ [−I, I]d×L. We then use the first feed-forward layer FFF
1 , constructed by fFF

1

and fFF
2 , to approximate g2(Z).

Second Step Contextual Mapping. Let G̃D ⊆ G◦
D denote the sub-grid on [0, 1]d×L:

G̃D :=
{
G ∈ G◦

D| for all k, l ∈ [L], G:,k ̸= G:,l

}
.

By the construction of G◦
D, the sub-grid G̃D is a collection of grids with pairwise distinct

tokens, and every G ∈ G̃D represents a token-wise ((2ID)−1,
√
d, (2ID)−1)-separated

sequence.
From the construction of F (SA) in (H.6), we have:

∥F (SA)(Z):,k − Z:,k∥ <
1

4
√
dD

max
k′∈[L]

∥Z:,k′∥,

Recall that every entry in FFF
1 (Z) lies within [0, 1]. Therefore, by sufficiently large D, we

have:

F (SA) ◦ FFF
1 (Z)t,k <

1

4D
for all t ∈ [d], k ∈ [L],

for all Z ∈ Rd×L \ [0, 1]d×L. Also, for Z ∈ [0, 1]d×L, we have

F (SA) ◦ FFF
1 (Z)t,k >

3

4D
for all t ∈ [d], k ∈ [L].

Third Step Memorization. We construct a bump function of scale RFF > 0 that maps
every C ∈ G̃D to its label f(G), and sends any sequence that lies component-wise below
the threshold 1/(4D) to zero. We achieve this with the second feed-forward layer FFF

2 .
Specifically, for each reference sequence C ∈ G̃D we define a bump function:

bumpR(Z) =
f
(
I(2C − 1)

)
dL

d∑
t=1

L∑
k=1

(ReLU [RFF(Zt,k − Ct,k)− 1] (H.18)

− ReLU [RFF(Zt,k − Ct,k)] + ReLU [RFF(Zt,k − Ct,k) + 1]).

Summing (H.18) over all C ∈ G◦
D yields the overall map FFF

2 .
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Choosing the quantization step δ > 0 sufficiently small, we obtain

dp

(
F (FF)

2 ◦ F (SA) ◦ F (FF)
1 ,F (FF)

2 ◦ F (SA) ◦ g2
)
<
ϵ

3
. (H.19)

Choosing the granularity D sufficiently large,
∣∣∣GD \ G̃D

∣∣∣ is negligible. Therefore,

dp

(
FFF

2 ◦ F (SA) ◦ g2, g1
)
<
ϵ

3
. (H.20)

Finally, combining the step-function estimate (H.12) with (H.19) and (H.20), we have:

dp

(
FFF

2 ◦ F (SA) ◦ FFF
1 , f

)
< ϵ.

This completes the proof.

Remark H.1. We remark that we achieve Theorem H.2 using 2 FFN layers and g ∈ T 1,1,r
R ,

where r = O(ID). Further, by Definition B.2, T 1,1,r
R belongs to our transformer network class.

Parameter Norm Bounds for Transformer Approximation. Next lemma provides matrices
norm bounds required to achieve the universal approximation of transformer with any error ϵ.

Lemma H.4 (Transformer Matrices Bounds, Modified from Lemma F.4 and Lemma F.5 of [Hu
et al., 2025b]). Let ϵ ∈ (0, 1). Let Z ∈ [−I, I]d×L be an input sequence, where I is an absolute
positive constant and L ≥ 2. Let f(Z) : [−I, I]d×L → Rd×L be any Lipchitz continuous function
with respect to some norm dY . Then, for g ∈ T r,h,s

R that approximates f within ϵ precision, i.e.,
dY (f, g) < ϵ , the parameter bounds in the transformer network class follow:

CKQ, C
2,∞
KQ = O(I4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O

(
Iϵ−1 ·max ∥f(Z)∥F

)
; CE = O(1),

where O(·) hides polynomial and logarithmic factors depending on d and L.

Proof. Hu et al. [2025b] provide similar parameter bounds for the universal approximation
of transformers on domain [0, 1]d×L. We specify these bounds for approximation on domain
[−I, I]d×L

Recall the construction of transformer layers in the proof of Theorem H.2. We achieve the univer-
sal approximation by choosing “sufficiently large” granularity D, “sufficiently small” δ in (H.13)
and “sufficiently large” scale of the bump function RFF in (H.18).

To prove Lemma H.4, we first identify the order of δ,D andRFF in terms ϵ. Then, we derive norm
bounds on matrices in two feed-forward layers FFF

1 ,FFF
2 , and the self attention layer FSA.

Bound on δ. Recall the approximation of quantization function in (H.13). In each step function,
we have extra partition (1/D, 1/D + δ). Therefore, it suffices to take δ = o(1/D).
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Bound on the Granularity D. Recall the contextual mapping step in the proof of Theorem H.2.
The total omitted duplicated points in the grid G◦

D are
∣∣∣G◦

D \ G̃D

∣∣∣ = ∣∣D−d · (2ID)dL
∣∣, where

G̃D ⊆ G◦
D is the sub-grid consisting of sequences with non-duplicated tokens. Further, by the

extreme value theorem, ∥f∥pp ≤ BT for a constant BT > 0. Then, the difference between the
target function f and the piece-wise constant approximator g1 with granularity D is bounded by

dp(f, g1)

=
(∫

∥f(Z)− g1(Z)∥ppdZ
) 1

p

= O
((
D−d(2ID)dL ·BT (1/D)dL

) 1
p

)
= O(D−d/p · IdL).

For p ∈ [1,∞), we have that ϵ = O(D−d/p ·IdL). This impliesD = O(ϵ−p/d ·I−L/p). Without loss
of generality, we drop I−L/p ∈ (0, 1) and drop the constant p. Then, we have that D = O(ϵ−1/d).

Next, recall the piece-wise constant approximation (H.10), (H.11) and (H.12).

For Lipchitz continuous target function f , there exist a grid GD on domain [−I, I]d×L such that

dp(f(Z), g1(Z)) < Lf∥Z − Z ′∥2 ≤ Lf∥Z − Z ′∥F ≤
√
dLLf/D,

where Z ′ ∈ GD and Lf is the Lipchitz constant with respect to the matrix 2-norm. Therefore, it
suffices to take ϵ =

√
dLLf/D. Altogether, we take D = O(ϵ−1) such that Theorem H.2 holds.

Bound on the Scale RFF. Let St,k := Zt,k − Ct,k. Recall (H.18). To obtain the correct labeling,
we ensure that the following identity holds:

d∑
t=1

L∑
k=1

ReLU [RFFSt,k − 1]− ReLU [RFFSt,k] + ReLU [RFFSt,k + 1] = dL. (H.21)

To achieve this, St,k = Zt,k − Ct,k ∈ (0, 1/RFF) needs to holds for all t ∈ [d] and k ∈ [L].
Therefore, we set RFF to be sufficiently large such that (H.21) holds under the condition that
St,k ∈ (0, 1/RFF) only if Zt,k is associated with its corresponding grid point Ct,k. Since every
Ct,k is defined on the normalized grid G◦

D with granularity 2DI , it suffices to take RFF = O(DI).

Next, we derive the norm bounds on weight matrices.

• Bounds on WQ and WK in FSA. For the self-attention layer, we denote the separatedness
of the input tokens by (γmin, γmax, ϵs) and the separatedness of the output tokens by (γ, δs).
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Recall Theorem H.1. We construct rank ρ matrix WQ and WK in the self-attention layer by

WK =

ρ∑
i=1

piq
⊤
i ∈ Rs×d, WQ =

ρ∑
i=1

p′iq
′⊤
i ∈ Rs×d,

with the identity p⊤i p
′
i = (|V|+ 1)4dδs/(ϵsγmin). Then, the bounds on WKQ follows

∥WKQ∥2 ≤ ∥WKQ∥F = ∥(WK)
⊤WQ∥F = O

(δs|V|4
ϵsγmin

)
,

∥WKQ∥2,∞ = ∥(WK)
⊤WQ∥2,∞ = O

(δs|V|4
ϵsγmin

)
.

We identify the order of each terms. Recall the first step quantization (H.13). We have total
(DI)dL input that are token-wise ((2ID)−1,

√
d, (2ID)−1)-separated.

Further, since there are at most DI possible values that each entry can take, we have vocab-
ulary |V| = O((DI)d) and γmin, ϵs = (2DI)−1. Further, from the proof of the second step
contextual mapping in Theorem H.1, we construct the self-attention such that δs = 4 logL.
Finally, by D = O(ϵ−1) the bounds on WKQ follows

∥WKQ∥2 ≤ CKQ = O(ϵ−4d−2 · I4d+2); ∥WKQ∥2,∞ ≤ C2,∞
KQ = O(ϵ−4d−2 · I4d+2).

• Bounds on WO and WV in FSA. From the proof of contextual mapping of self-attention
Theorem H.1, we have

WV =

ρ∑
i=1

p′′i q
′′⊤
i ∈ Rs×d; WO =

ρ∑
i=1

p′′′i p
′′
i
⊤ ∈ Rd×s,

with the identity ∥p′′′i ∥ ≲ ϵs/(4ργmax∥p′′i ∥) from (H.5), and p′′i ∈ Rs is any nonzero vector.
With the (γmin = 1/D, γmax =

√
d, ϵs = 1/D) separateness and D = O(ϵ−1), we have

∥WV ∥2 = sup
∥x∥2=1

∥WV x∥2 ≤ CV = O (
√
ρ) = O

(√
d
)
,

∥WV ∥2,∞ = max
1≤i≤d

∥(WV )(i,:)∥2 ≤ C2,∞
V = O (ρ) = O (d) ,

∥WO∥2 = sup
∥x∥2=1

∥WOx∥2 ≤ CO = O
(√

ρ · ρ−1 · γ−1
max · ϵs

)
= O

(
d−1ϵ

)
∥WO∥2,∞ = max

1≤i≤s
∥(WO)(i,:)∥2 ≤ C2,∞

O = O
(
ρ · ρ−1 · γ−1

max · ϵs
)
= O

(
d−1/2ϵ

)
.

Therefore,

∥WOV ∥2 = ∥WOWV ∥2 ≤ COV = O(ϵ); ∥WOV ∥2,∞ = ∥WOWV ∥2,∞ ≤ C2,∞
OV = O(ϵ).
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• Bounds on W1 and W2 in FFF
1 Recall (H.13) and (H.14). We have:

fFF
1 (z) := f1(z)− I ·

(
ReLU [z/δ − I/δ]− ReLU [z/δ − 1− I/δ]

)
+ I ·

(
ReLU [−z/δ − I/δ]− ReLU [−z/δ − 1− I/δ]

)
,

where

f1(z) := −I +
I(D−1)∑
t=−ID

ReLU [z/δ − t/δD]− ReLU [z/δ − 1− t/δD]

D
,

and

fFF
2 := ReLU [(z − I)/δ]− ReLU [(z − I)/δ + 1]

+ ReLU [(−z − I)/δ]− ReLU [(−z − I)/δ + 1] .

Then, for any t ∈ [d] and k ∈ [L], we approximate each entry of g1(Z) in (H.17) by

FFF
1 (Zt,k) =

(
fFF
1 (Zt,k) + I

)
2I

+
d∑

t=1

L∑
k=1

fFF
2 (Zt,k).

Therefore, each element in W1 and W2 are bounded by 1/δ > 1 and I > 1 respectively.
Then, by δ = o(1/D) and D = O(ϵ−1), we have

max{∥W1∥2, ∥W2∥2} ≤ C2
F = O(ϵ−1); max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞

F = O(ϵ−1).

• Bounds on W1 and W2 in FFF
2 . Recall the construction of bump function (H.18). The

second feed-forward layer maps each coordinate of the input embedding by

bumpR(Z) =
f(2C + I)

dL

d∑
t=1

L∑
k=1

(ReLU [RFF(Zt,k − Ct,k)− 1]

− ReLU [RFF(Zt,k − Ct,k)] + ReLU [RFF(Zt,k − Ct,k) + 1]).

Therefore, each element in W1 and W2 are bounded by RFF and f(C) respectively, where
C is a point on the normalized grid G◦

D with granularity 2DI defined in (H.10).
Then, by RFF = O(DI) and D = O(ϵ−1), we have

max{∥W1∥2, ∥W2∥2} ≤ C2
F = O(Iϵ−1 ·max

Ω
∥f∥F ),

max{∥W1∥2,∞, ∥W2∥2,∞} ≤ C2,∞
F = O(Iϵ−1 ·max

Ω
∥f∥F ),

where Ω = [−I, I]d×L is the domain of the target function f .

• Bounds on Positional Encoding Matrix E. By [Kajitsuka and Sato, 2023, Corollary 2], it
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suffices to set the positional encoding as:

E =

2γmax 4γmax · · · 2Lγmax
...

... . . . ...
2γmax 4γmax · · · 2Lγmax

 .

Since the ℓ2 norm over every row is identical, we have

∥∥E⊤∥∥
2,∞ =

(
L∑
i=1

(2iγmax)
2

) 1
2

=

(
4γ2max

L(L+ 1)(2L+ 1)

6

)2

= O
(
γmaxL

3
2

)
.

Recall that we have the relation γmax =
√
d in the self-attention layer. Therefore,∥∥E⊤∥∥

2,∞ ≤ CE = O(d1/2L3/2).

Further dropping the polynomial factors depending on d and L, we have CE = O(1).

This completes the proof.
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I Statistical Rates of Flow Matching Transformers (FMTs)

In this section, we present statistical rates for the first order flow, i.e., the velocity field, ut(x).

Specifically, we consider the target density function q1(x) in the Hölder space (Definition I.1) with
sub-Gaussian property. Then, we bound the approximation and estimation error for ut(x). Further,
we extend these results to derive distribution estimation rates under the 2-Wasserstein distance.
Compared to high-order flow matching statistical rates Section 4, we remove the requirement of
Lipschitz continuousness of the velocity field ut(x).

Organizations. Section I.1 presents velocity approximation under a generic Hölder smoothness
assumption. Section I.2 adopts a stronger Hölder smoothness assumption; this yields tighter ap-
proximation error bounds toward minimax optimality in velocity estimation. Section I.3 utilizes
these approximation results to develop velocity estimation bounds and distribution estimation
rates. Finally, Section I.4 establishes the nearly minimax optimality of flow matching transform-
ers.

I.1 Velocity Approximation: Generic Hölder Smooth Data Distributions
Establishing our statistical theory begins with approximating the velocity using transformers. We
present the corresponding velocity approximation theory under the Hölder smoothness assumption
on the initial data [Fu et al., 2024]. This theory ensures our approximation rate adaptive to the
initial data’s smoothness. First, we restate the definition of Hölder space and Hölder ball.

Definition I.1 (Definition 4.1 Restated: Hölder Space). Let α ∈ Zd
+, and let β = k1 + γ denote

the smoothness parameter, where k1 = ⌊β⌋ and γ ∈ [0, 1). For a function f : Rd → R, the
Hölder space Hβ(Rd) is defined as the set of α-differentiable functions satisfying: Hβ(Rd) :={
f : Rd → R | ∥f∥Hβ(Rd) <∞

}
, where the Hölder norm ∥f∥Hβ(Rd) satisfies:

∥f∥Hβ(Rd) := max
α:∥α∥1<k1

sup
x

|∂αf(x)|+ max
α:∥α∥1=k1

sup
x̸=x′

|∂αf(x)− ∂αf(x′)|
∥x− x′∥γ∞

.

Also, we define the Hölder ball of radius B by Hβ(Rd, B) :=
{
f : Rd → R | ∥f∥Hβ(Rd) < B

}
.

Before presenting the main result of velocity approximation, we state our two assumptions: (i) the
Generic Hölder Smooth assumption on the target distribution q(x1). (ii) the regularity assumption
on the first derivative of path coefficients. In particular, (i) and (ii) are the counterparts of Assump-
tion 4.1 and Assumption 4.2 in the K order flow matching framework (Section 4) respectively.
Notably, we remove the Lipschitzness assumption via a more fine-grained analysis on the velocity
field ut(x).

Assumption I.1 (Generic Hölder Smooth Data). The density function q(x1) belongs to Hölder
ball of radius B > 0 with Hölder index β > 0 (Definition 4.1), denoted by q(x1) ∈ Hβ(Rdx , B).
Also, there exist constant C1, C2 > 0 such that q(x1) ≤ C1 exp

(
−C2∥x1∥22/2

)
.
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Assumption I.2 (Path Regularity). Consider the affine conditional flow ψt(x|x1) = µtx1 + σtx.
The first-derivative of path coefficients σ̇t and α̇t are continuous on [t0, T ], where t0, T ∈ (0, 1).

Remark I.1. We remark that such path assumption is general and applies to a number of com-
mon scenarios. For instance, Lipman et al. [2024] present: (i) the conditional optimal transport
schedule: ψt(x|x1) = tx1 + (1− t)x, (ii) the polynomial schedule: ψt(x|x1) = tnx1 + (1− tn)x,
(iii) the linear variance preserving schedule: ψt(x|x1) = tx1 +

√
1− t2x. These cases satisfy

Assumption I.2.

We now present the velocity approximation for flow matching transformers.

Theorem I.1 (Velocity Approximation with Transformers under Generic Hölder Smoothness).
Assume Assumption I.1 and Assumption I.2. For any precision parameter 0 < ϵ < 1 and
smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all t ∈ [t0, T ]
with t0, T ∈ (0, 1), there exists a transformer uθ(x, t) ∈ T h,s,r

R such that∫ T

t0

∫
Rdx

∥ut(x)− uθ(x, t)∥22 · pt(x) dxdt = O
(
B2N−β · (logN)dx+

β
2
+1
)
.

Let d be the feature dimension and L be the sequence length defined by the flow matching reshape
layer in Definition B.3. Then, the parameter bounds in transformer network T h,s,r

R satisfy

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4dx+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2

+1
)
; CE = O(1); CT = O(

√
logN).

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof Sketch. We adopt the following strategy:

• Step 1: Approximation on a Compact Domain via Transformer Universality. To reflect
the Hölder smoothness of the target density q(x1), we begin by applying a multivariate
Taylor expansion to construct a compactly supported approximation of velocity field ut(x).
We then approximate this function on a compact domain using the universal approximation
of transformers.

• Step 2: Extension to the Full Domain via Sub-Gaussian Tails. We exploit the sub-
Gaussian tail behavior of the target distribution to control the approximation error outside
the compact region. Combining the errors from both regions yields the final approximation
rate for the velocity field.

Please see Section J for a detailed proof.

I.2 Velocity Approximation: Stronger Hölder Smooth Data Distributions
We obtain tighter velocity approximation rates than Section I.1 by imposing stronger Hölder
smoothness assumption on the target distribution q(x1).

63



Assumption I.3 (Stronger Hölder Smooth Data). Let C, C1 and C2 be positive constants. The
density function satisfies q(x1) = exp

(
−C2∥x1∥22/2

)
· f(x1), where f belongs to Hölder space

f(x1) ∈ Hβ(Rdx , B) (Definition 4.1) and satisfies C1 ≥ f(x1) ≥ C for all x1.

The density lower bound prevents f(x) from taking small values, ensuring well-conditioned ap-
proximation. Without this bound, small values of f(x) require a chosen threshold to maintain
uniform approximation. A positive lower bound eliminates the need for such adjustments, keep-
ing the approximation error controlled across the domain and enabling efficient convergence.

Assuming Assumption I.3, we derive the velocity approximation for flow matching transformers.

Theorem I.2 (Velocity Approximation with Transformers under Stronger Hölder Smoothness).
Assume Assumption I.3 and Assumption I.2. For any precision parameter 0 < ϵ < 1 and
smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all t ∈ [t0, T ]
with t0, T ∈ (0, 1), there exists a transformer uθ(x, t) ∈ T h,s,r

R such that∫ T

t0

∫
Rdx

∥ut(x)− uθ(x, t)∥22 · pt(x)dxdt = O
(
B2N−2β(logN)dx+β

)
,

Further, the parameter bounds in the transformer network class follows Theorem I.1.

Proof Sketch. The proof strategy closely follows Theorem I.1:

• Step 0: Velocity Decomposition. We invoke Assumption I.3 to decompose the velocity
field into a target function that is lower bounded. This step mitigates the influence of low-
density regions and enables a more refined approximation analysis, in contrast to the setting
under Assumption I.1.

• Step 1: Approximation with Transformer Universality on Compact Domain. To cap-
ture the Hölder regularity of the target density q(x1), we construct a compactly supported
function as an intermediary to approximate the velocity field ut(x) using multivariate Taylor
expansion. We then apply the universal approximation of transformers to approximate the
constructed function.

• Step 2: Full Domain Approximation. We extend the approximation to the full space by
leveraging the sub-Gaussian tail behavior, ensuring that the error outside the compact region
remains controlled. Then, we incorporate all errors terms to achieve the final approximation
rates for ut(x).

Please see Section K for a detailed proof.

I.3 Velocity Estimation and Distribution Estimation
In this section, we study the statistical estimation problems and develop sample complexity results
based on the established approximation results in Section I.1 and Section I.2. Specifically, we
present the estimation error bound of flow matching transformers in Theorem I.3. Applying the
velocity estimation rates, we further study the distribution estimation in Theorem I.4.
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Velocity Estimation Building on the transformer-based velocity approximation, we evaluate the
performance of the velocity estimator uθ trained with i.i.d. data points {xi}ni=1 by optimizing the
empirical loss (2.12). To quantify this, we define flow matching risk:

Definition I.2 (Flow Matching Risk). Let q be the target distribution and X1 ∼ q. Given a
velocity estimator uθ, we define the flow matching risk R(uθ) as the expectation of the mean-
squared difference between the uθ and the ground truth ut:

R(uθ) :=
1

T − t0

∫ T

t0

E
xt∼pt

[∥uθ(xt, t)− ut(xt)∥22] dt,

where marginal probability path pt and marginal velocity field ut are induced by affine conditional
flow ψt(x|x1) = µtx1 + σtx follows (2.2), (2.3), (2.5) and (2.6).

Let ûθ be the trained velocity estimator with i.i.d samples {xi}ni=1. Then the following theorem
presents upper bounds on the expectation of R(ûθ) w.r.t training samples {xi}ni=1, where xi ∼ q.

Theorem I.3 (Velocity Estimation with Transformer). Let d be the feature dimension. Suppose
we choose the transformers as in Theorem I.1 and Theorem I.2 correspondingly, then we have

• Assume Assumption I.1 and Assumption I.2. Then,

E
{xi}ni=1

[R(ûθ)] = O(n− 1
16d+15 (log n)20dx+4β+20).

• Assume Assumption I.2 and Assumption I.3. Then,

E
{xi}ni=1

[R(ûθ)] = O(n− 1
8d+9 (log n)20dx+4β+20).

Proof Sketch. Recall (2.12) from Section 2. We obtain the velocity estimator ûθ(x, t) ∈ T h,s,r
R by

minimizing the empirical conditional flow matching loss:

L̂CFM(uθ) :=
1

n

n∑
i=1

∫ T

t0

1

T − t0
E

X0∼N(0,I)
[|uθ(µtxi + σtX0, t)− (µ̇txi + σ̇tX0)|22].

To derive the estimation error, we adopt a standard strategy in empirical process theory. This
involves bounding the generalization gap between empirical and true risk using covering number
techniques:

• Step 1: Domain Truncation for Risk Control. We truncate the domain of the flow match-
ing risk and the flow matching loss to ensure the transformer network has a finite cover-
ing number. We then control the error outside of the truncated domain by using the sub-
Gaussian tail bound.

• Step 2: Analysis on the Complexity of the Transformer Network Class via Covering
Number. Using the norm bounds on transformer parameters from Section I.2, we derive an
upper bound on the covering number of the transformer networkfunction class. This cap-

65



tures the model complexity required to achieve a desired approximation rate on the compact
domain.

• Step 3: Final True Risk Upper Bound. We apply the covering number bound to con-
trol the deviation between the empirical risk and the true risk. Lastly, we incorporate all
sources of error from previous steps to derive the final estimation rate for the learned veloc-
ity field ûθ(x, t) ∈ T h,s,r

R via the minimization of the empirical conditional flow matching
loss L̂CFM(uθ) in (2.12).

Please see Section L for a detailed proof.

Distribution Estimation. Next, we analyze the distribution estimation rate for the velocity
estimator ûθ through the 2-Wasserstein distance between estimated and true distributions. Based
on the velocity estimation results in Section I.3, the next theorem presents upper bounds on the
2-Wasserstein distance between the target distribution and the estimated distribution induced by
the velocity estimator ûθ trained from optimizing the empirical conditional loss (2.12).

Theorem I.4 (Distribution Estimation under 2-Wasserstein Distance). Let P̂T denote the esti-
mated distribution at time T . Let d be the feature dimension.

• Assume Assumption I.1 and Assumption I.2. It holds

E
{xi}ni=1

[W2(P̂T , PT )] = O(n− 1
32d+30 (log n)10dx+2β+10).

• Assume Assumption I.2 and Assumption I.3. It holds

E
{xi}ni=1

[W2(P̂T , PT )] = O(n− 1
16d+18 (log n)10dx+2β+10).

Proof Sketch. We derive the distribution estimation rate under the 2-Wasserstein distance by re-
lating it to the velocity estimation error through the flow dynamics. Our proof follows three steps:

• Step 1: Flow Deviation via Alekseev–Gröbner Lemma. We apply the Alekseev–Gröbner
lemma (Lemma M.2) to bound the deviation between the learned flow ψθ and the true flow
ψ in terms of the difference between the estimated velocity ûθ(x, t) and true velocity fields
ut(x).

• Step 2: Bounding the Jacobian via Grönwall’s Inequality. The flow deviation bound
given by the Alekseev–Gröbner lemma involves the Jacobian matrix Dψθ. To ensure the
deviation remains controlled over time, we use Grönwall’s inequality (Lemma M.1) along
with the Lipschitz continuity of the network to upper bound the Jacobian norm by an expo-
nential function.

• Step 3: From Velocity Error to Wasserstein Distance. We integrate the velocity error
over time and apply the definition of the 2-Wasserstein metric to relate the flow deviation
to W2(P̂T , PT ). Substituting the velocity estimation error from Theorem I.3 then gives the
final convergence rate.

Please see Section M for a detailed proof.
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I.4 Minimax Optimal Estimation
In Theorem I.4, we present a fine-grained analysis of distribution estimation. In this section, we
further show that the derived estimation rates match the minimax lower bounds in Hölder space
under the 2-Wasserstein metric in specific setting. We begin by recalling the minimax optimal rate
for distribution estimation over Hölder smooth function classes.

Lemma I.1 (Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]). Consider the task
of estimating a probability distribution P (x1) with density belonging to the space

P :=
{
q(x1)|q(x1) ∈ Hβ([−1, 1]dx , B), q(x1) ≥ C

}
,

Then, for any r ≥ 1, β > 0 and dx > 2, we have

inf
P̂

sup
q(x1)∈P

E
{xi}ni=1

[Wr(P̂ , P )] ≳ n− β+1
dx+2β ,

where {xi}ni=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible
estimators constructed from the data.

Proof. Please see Section N for a detailed proof.

We show flow matching transformers match the minimax optimal rate under specific conditions.

Theorem I.5 (Minimax Optimality of Flow Matching Transformers). Under the setting of
(16d + 18)(β + 1) = dx + 2β, the distribution estimation rate of flow matching transformers
(Theorem I.4) matches the minimax lower bound of Hölder distribution class in 2-Wasserstein
distance up to a log n and Lipschitz constants factors.

Proof. Please see Section N for a detailed proof.
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J Proof of Theorem I.1
In this section, we use transformers to approximate velocity and give an upper bound of the ve-
locity approximation error. We prove Theorem I.1 following the three steps shown in the proof
sketch.

Organizations. Section J.1 introduces auxiliary lemmas. Section J.2 establishes a bound on
the velocity approximation error over a bounded domain by applying the universal approxima-
tion of transformers. Section J.3 presents the main proof by incorporating the bounded-domain
approximation error and controlling the unbounded region using the sub-Gaussian assumption.

J.1 Auxiliary Lemmas
In this section, we introduce auxiliary lemmas for velocity approximation. Specifically, we de-
compose the velocity field ut(x) into three components in Lemma J.1 based on the setting of
affine conditional flows (Section 2). To approximate each component, we clip the integral domain
of x1 in the integrals defining Φ1(x, t), Φ2(x, t), and Φ3(x, t) to a closed and bounded region in
Lemma J.2. This step allows us to perform the approximation on a bounded domain while con-
trolling the error introduced by restricting the integral. Furthermore, we revisit the bounds on
the density function pt(x) in ℓ∞-distance, and extend these bounds to the velocity field ut(x) in
Lemma J.3 and Lemma J.4.

Decomposition of Velocity Field. We present the next lemma to decompose the velocity field
ut(x). Constructing an approximator for ut(x) is difficult due to its complex structure. This de-
composition splits the velocity into three functions, each satisfying properties that make approxi-
mation feasible. These components allow the use of sub-Gaussian assumptions on the target dis-
tribution (Assumption I.1) and provide better control over the approximation error (Lemma J.9).

Lemma J.1 (Decomposition of Velocity Field). Under the flow matching setting (Section 2), the
velocity field follows a decomposition:

ut(x) = Φ1(x, t)
−1 ·

( µ̇t

µt

· Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
,

where

Φ1(x, t) :=

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) := x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) :=

∫
Rdx

(
x− µt · x1

σt

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.
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Proof. By (2.5), the density function pt(x) has the form

pt(x) =

∫
pt(x|x1) · q(x1) dx1

=
1

σdx
t (2π)dx/2

∫
exp

(
−∥µtx1 − x∥2

2σ2
t

)
· q(x1) dx1.

Therefore, we have pt(x) = Φ1(x, t).

Then, we rewrite the velocity field at time t by

ut(x)

=
1

pt(x)
·
∫
Rdx

ut(x|x1)pt(x|x1)q(x1) dx1

=
1

pt(x)
·
∫
Rdx

(
σ̇t(x− µt · x1)

σt
+ µ̇t · x1

)
· pt(x|x1)q(x1)dx1

(
By (2.6) and (2.8)

)
=

1

pt(x)
·
∫
Rdx

(
σ̇t(x− µt · x1)

σt
− µ̇t

µt

(x− µt · x1) +
µ̇t

µt

· x
)
· pt(x|x1)q(x1)dx1

= Φ1(x, t)
−1 ·

(
σ̇t · Φ3(x, t)−

µ̇tσt
µt

· Φ3(x, t) +
µ̇t

µt

· Φ2(x, t)

)
(
By the definition of Φ1, Φ2 and Φ3

)
= Φ1(x, t)

−1 ·
( µ̇t

µt

· Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
.

This completes the proof.

Based on decomposition, we construct separate approximators for Φ1(x, t), Φ2(x, t), and Φ3(x, t).
Then, we approximate ut(x) by combining these approximations in Section J.2.

Clipping Integral Domain. Next lemma handles unbounded integral domain of Φ1(x, t),
Φ2(x, t), and Φ3(x, t). Lemma J.2 ensures that for any small error ϵ > 0 and any fixed x ∈ Rdx , a
bounded domain Bx dependent on ϵ and x exists, where the integral outside Bx remains bounded
by ϵ.
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Lemma J.2 (Clip the Multi-Index Gaussian Integral, Lemma A.8 of [Fu et al., 2024] and Lemma
F.9 of [Oko et al., 2023]). Assume Assumption I.1. Let dx be the dimension of the target data
x1 and n ∈ N. Then, for any κ ∈ Zdx

+ with ∥κ∥1 ≤ n, x1 ∈ Rdx and 0 < ϵ ≤ 1/e, there exists a
constant C(n, dx) ≥ 1 such that∫

Rdx\Bx

∣∣∣∣(µt · x1 − x

σt

)κ∣∣∣∣ · q(x1)

σdx
t (2π)dx/2

· exp

(
−∥µtx1 − x∥2

2σ2
t

)
dx1 ≤ ϵ,

where (µt·x1−x
σt

)κ := ((µt·x1[1]−x[1]
σt

)κ[1], . . . , (µt·x1[dx]−x[dx]
σt

)κ[dx]) is a multi-index vector and

Bx :=
[x− σtC(n, dx)

√
log (1/ϵ)

µt

,
x+ σtC(n, dx)

√
log (1/ϵ)

µt

]
⋂[

C(n, dx)
√
log (1/ϵ), C(n, dx)

√
log (1/ϵ)

]dx
. (J.1)

Remark J.1. The rationale behind this error choice follows from the need to control the clipping
error, when we construct a polynomial-like approximator for the components of the decomposed
velocity Φ1, Φ2, and Φ3 on the bounded domain Bx,N . Specifically, these approximations capture
the smoothness of the density function in Hölder space and leads to an error of order N−β up to a
logarithmic factor. Therefore, the clipping error is set to match this order.

Bounds on Density Function and Velocity. We introduce two lemmas that provide bounds on
the density function pt(x) and the velocity field ut(x). These bounds are crucial because the
maximum output of the transformer network class plays a key role in analyzing the capacity of
the loss function class in estimation error analysis (Section I.3). We start with the bounds on pt(x)
and ∇ log pt(x).

Lemma J.3 (Bounds on the Density Function, Lemma A.9 and Lemma A.10 of [Fu et al., 2024]).
Recall that pt(x) =

∫
Rdx pt(x|x1)q(x1)dx1 and pt(x|x1) = 1

σdx
t (2π)dx/2

exp(−∥x− µtx1∥22/2σ2
t ).

Assume Assumption I.1. There exist a C7 > 0 such that

C7

σdx
t

· exp
(
−∥x∥22 + 1

σ2
t

)
≤ pt(x) ≤

C1

(µ2
t + C2σ2

t )
dx/2

· exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
.

Moreover, there exist a positive constant C ′
7 such that

∥∇ log pt(x)∥∞ ≤ C ′
7

σ2
t

· (∥x∥2 + 1).

By Lemma J.1, the velocity field ut(x) follows the decomposition

ut(x) = Φ1(x, t)
−1 ·

( µ̇t

µt

· Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
.
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With this expression, we apply Lemma J.3 to obtain bound on the velocity ut(x) in ℓ∞-distance.

Lemma J.4 (ℓ∞-Bounds on the Velocity Field). Assume Assumption I.1. Then, there exists a
positive constant C5 such that

∥ut(x)∥∞ ≤ |µ̇t|
µt

· ∥x∥∞ + C5

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1).

Proof. Recalling from Lemma J.1, we have the velocity decomposition

ut(x) = Φ1(x, t)
−1 ·

( µ̇t

µt

· Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
,

where

Φ1(x, t) =

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =

∫
Rdx

(
x− µt · x1

σt

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

First, we rewrite the expression of Φ2(x, t) and Φ3(x, t). Then, we derive the bound on ut(x).

• Step 1. Rewrite Φ2(x, t) and Φ3(x, t). By the definition of Φ2(x, t) and Φ3(x, t), it holds

Φ2(x, t) = x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1 = x · Φ1(x, t).

Therefore, for all i ∈ [dx], it holds∣∣∣∣ µ̇t

µt

· Φ2(x, t)[i]

∣∣∣∣ = ∣∣∣∣ µ̇tx[i]

µt

· Φ1(x, t)

∣∣∣∣. (J.2)

Next, since the gradient of pt(x) has the expression

∇pt(x) = −
∫ (

x− µt · x1
σ2
t

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
q(x1) dx1,

we have Φ3(x, t) = −∇pt(x) · σt.
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Therefore, for all i ∈ [dx], it holds∣∣∣∣(σ̇t − µ̇tσt
µt

)
· Φ3(x, t)[i]

∣∣∣∣ = ∣∣∣∣(σ̇t − µ̇tσt
µt

)
σt · ∇pt(x)[i]

∣∣∣∣. (J.3)

• Step 2. Bound Velocity Field. Based on Step 1, the following holds for all i ∈ [dx]

|ut[i]|

=

∣∣∣∣Φ1(x, t)
−1 ·

( µ̇t

µt

· Φ2(x, t)[i] + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)[i]
)∣∣∣∣

≤
∣∣∣∣Φ1(x, t)

−1 ·
( µ̇t

µt

· Φ2(x, t)[i]
)∣∣∣∣+ ∣∣∣∣Φ1(x, t)

−1
(
(σ̇t −

µ̇tσt
µt

) · Φ3(x, t)[i]
)∣∣∣∣(

By triangle inequality
)

=

∣∣∣∣Φ1(x, t)
−1 ·

( µ̇tx[i]

µt

· Φ1(x, t)
)∣∣∣∣+ ∣∣∣∣Φ1(x, t)

−1
(
(
µ̇tσ

2
t

µt

− σ̇tσt) · ∇pt(x)[i]
)∣∣∣∣(

By (J.2) and (J.3)
)

=

∣∣∣∣ µ̇t

µt

· x[i]
∣∣∣∣+ ∣∣∣∣ µ̇tσ

2
t

µt

− σ̇tσt

∣∣∣∣ · |∇ log pt(x)[i]|
(
By ∇ log pt = ∇pt/pt

)
≤
∣∣∣∣ µ̇t

µt

· x[i]
∣∣∣∣+ C5

∣∣∣∣ µ̇tσ
2
t

µt

− σ̇tσt

∣∣∣∣ · ∣∣∣∣ 1σ2
t

· (∥x∥2 + 1)

∣∣∣∣. (
By Lemma J.3

)
Therefore, by symmetry,

∥ut(x)∥∞ ≤ |µ̇t|
µt

· ∥x∥∞ + C5

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1).

This completes the proof.

J.2 Velocity Approximation on Bounded Domain
In this section, we approximate the velocity field ut(x) on a bounded domain through a two-step
approach. Specifically, the first step constructs three compactly supported continuous functions
Ψ1(x, t), Ψ2(x, t) and Ψ3(x, t) as approximators for Φ1(x, t), Φ2(x, t), and Φ3(x, t) in Lemma J.5,
Lemma J.6, and Lemma J.7 respectively. Then, the second step applies the universal approxima-
tion to approximate Ψ1(x, t), Ψ2(x, t) and Ψ3(x, t) with transformers in Lemma J.8. Bu incorpo-
rating these steps, we derive the velocity approximation on a bounded domain in Lemma J.9.

Before proceeding, we reiterate on the velocity expression. By Lemma J.1, ut(x) has the form

ut(x) = Φ1(x, t)
−1 ·

( µ̇t

µt

Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
,

where

Φ1(x, t) =

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,
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Φ2(x, t) = x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =

∫
Rdx

(
x− µt · x1

σt

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Approximation of Φ1(x, t). This step builds on [Hu et al., 2025b, Fu et al., 2024].

By the expression of Φ1(x, t):

Φ1(x, t) =

∫
1

σdx
t (2π)dx/2

exp

(
−∥µtx1 − x∥2

2σ2
t

)
· q(x1) dx1,

we approximate q(x1) and exp
(
−∥µtx1−x∥2

2σ2
t

)
with k1-order Taylor polynomial and k2-order Taylor

polynomial on a bounded domain Bx,N , introduced in the integral clipping (Lemma J.2). Alto-
gether, we approximate Φ1 with the local polynomial Ψ1(x, t) on Bx,N with the expression:

Ψ1(x, t) :=
∑

v∈[N ]dx

∑
∥nx∥1≤k1

R
∥nx∥1
B

nx!

∂nxΦ1

∂xnx

∣∣∣∣∣
x=RB( v

N
− 1

2
)

g1(x, nx, v, t), (J.4)

where nx ∈ Zdx is a multi-index, RB > 0 is a constant depending on the Hölder ball radius B,

• g1(x, nx, v, t) :=
∏dx

i=1

∑
k2<p g2(x[i], nx[i], v[i], k2), and

• g2(x[i], nx[i], v[i], k2) :=
1

σt

√
2π

∫ (
x1

RB
+ 1

2
− v[i]

N

)nx[i]
1
k2!

(
− |x[i]−µtx1[i]|2

2σ2
t

)k2
dx1.

Hu et al. [2025b], Fu et al. [2024] consider the setting of conditional diffusion transformer with
classifier-free guidance. In contrast, we apply (J.4) by removing the condition y ∈ Rdy .

Since Ψ1(x, t) is an approximator of Φ1(x, t), we need to ensure that it is lower bounded away
from zero so that the denominator of velocity ut(x) in Lemma J.1 does not blow up.

Therefore, we introduce an additional definition.

Definition J.1 (Truncated Density Approximator). Let ϵlow be a positive real number, and let
Ψ1(x, t) be a scalar-valued function defined in (J.4). Then, we define

Ψc
1(x, t) := max{Ψ1(x, t), ϵlow}.

We specify the choice of ϵlow in Lemma J.9. For now, we approximate Φ1(x, t) with Ψ1(x, t).

73



Lemma J.5 (Local Polynomial Approximation of Φ1, Lemma A.4 of [Fu et al., 2024]). Assume
Assumption I.1. Let Ψ1(x, t) be the approximator of Φ1(x, t). Then, for any t ∈ [0, 1] and
x ∈ Rdx , it holds

|Ψ1(x, t)− Φ1(x, t)| ≲ BN−β (logN)
dx+k1

2 .

Next, we approximate Φ2(x, t).

Approximation of Φ2(x, t). By Lemma J.1, the following identity holds

Φ2(x, t) = x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1 = x · Φ1(x, t). (J.5)

Building upon the local polynomial Ψ1(x, t), we use x ·Ψ1(x, t) as the approximator of Φ2(x, t).

Next lemma gives the approximation error rate of Φ2(x, t) using Ψ2(x, t) := x ·Ψ1(x, t)

Lemma J.6 (Local Polynomial Approximation of Φ2). Assume Assumption I.1. Let Ψ1(x, t)
be the local polynomial and Ψ2(x, t) := xΨ1(x, t). Let Cx(dx, β, C1, C2) be a positive constant.
Then, for any t ∈ [0, 1] and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , it holds for all i ∈ [dx]

|Ψ2(x, t)[i]− Φ2(x, t)[i]|∞ ≲ BN−β (logN)
dx+k1+1

2 .

Proof. Since Ψ2(x, t) = xΨ1(x, t) and Φ2(x, t) = xΦ1(x, t), for all i ∈ [dx], it holds

|Ψ2[i]− Φ2[i]| = |xΨ1[i]− xΦ1[i]|
≤ |x[i]| · |Ψ1 − Φ1|

(
By (J.5)

)
≲ x[i] ·BN−β (logN)

dx+k1
2

(
By Lemma J.5

)
≲ BN−β (logN)

dx+k1+1
2 .

(
By x ∈ [−Cx

√
logN,Cx

√
logN ]dx

)

This completes the proof.

Approximation of Φ3(x, t). Similarly, we have approximation results for Φ3(x, t).

Lemma J.7 (Local Polynomial Approximation of Φ3, Lemma A.6 of [Fu et al., 2024]). As-
sume Assumption I.1. Let Cx(dx, β, C1, C2) be a positive constant. There exists local polynomial
Ψ3(x, t) such that for all t > 0, i ∈ [dx] and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , it holds

|Ψ3(x, t)[i]− |σt∇pt(x)|[i]| ≲ BN−β(logN)
dx+k1+1

2 .

74



Remark J.2. We clarify that Lemma J.7 gives the approximation of Φ3(x, t) using Ψ3(x, t).
First, the density at time t has the form:

pt(x) =

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Then, the gradient of pt(x) with respect to x has the form:

∇pt(x) =
∫
Rdx

−
(
x− µt · x1

σ2
t

)
1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

By Lemma J.1, we have Φ3(x, t) = |σt∇pt(x)|.
Therefore,

|Ψ3(x, t)[i]− Φ3(x, t)[i]| ≲ BN−β(logN)
dx+k1+1

2 .
(
By Lemma J.7

)
Velocity Approximation with Transformers on Bounded Domain. We first approximate the
velocity approximator constructed with Ψ1(x, t),Ψ2(x, t) and Ψ3(x, t). We reiterate that trans-
formers take input d×L matrices, where d×L = dx. Then, the next lemma specifies the network
configuration for the approximating the velocity approximator with arbitrarily small error.

Lemma J.8 (Approximate Velocity Approximator with Transformers). Assume Assumption I.1.
Let Cx(dx, β, C1, C2) be a positive constant. Further, let Ψ(x, t) : [−Cx

√
logN,Cx

√
logN ]dx ×

[0, 1] → Rdx be the target function:

Ψ(x, t) :=
µ̇tΨ2(x, t)/µt + (σ̇t − µ̇tσt/µt)Ψ3(x, t)

Ψc
1(x, t)

.

Then, for any t ∈ [0, 1] and any ϵ ∈ (0, 1), there exist a transformer g(x, t) ∈ T h,s,r
R such that∫ 1

0

∫
∥x∥∞≤Cx

√
logN

∥g(x, t)−Ψ(x, t)∥22dxdt ≤ ϵ2.

Furthermore, the parameter bounds in the transformer network class T h,s,r
R satisfy

CKQ, C
2,∞
KQ = O((logN)4d+2ϵ−4d−2);COV , C

2,∞
OV = O(ϵ);

CF , C
2,∞
F = O(

√
logN · ϵ−1 ·max ∥Ψ∥2); CE = O(1),

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. Since the path coefficients are smooth and the first-step approximators Ψ1(x, t), Ψ2(x, t),
and Ψ3(x, t) integrate polynomials, the target function is Lipschitz continuous on a compact do-
main. Further, the reshape layer Definition B.4 does not harm the continuity of the element-wise
ℓ2-norm. This continuity ensures that the function satisfies the conditions for applying the uni-
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versal approximation of transformers. Also, we concatenate t as a additional sequence. Then, we
apply Theorem H.2 with p = 2 and Z ∈ [−Cx

√
logN,Cx

√
logN ]d×(L+1).3 For any ϵ ∈ (0, 1), it

holds

d2(g, f) =
(∫ ∫

∥g(x, t)−Ψ(x, t)∥22dxdt
)1/2

≤ ϵ.
(
By Theorem H.2

)

The parameter bounds in the transformer network class follow Lemma H.4.

This completes the proof.

Remark J.3. Lemma J.8 modifies Lemma I.6 of [Hu et al., 2025b] by adapting the transformer
approximation to decomposed velocity components (Lemma J.1), whereas their work focuses on
approximating ∇ log pt(x). Our flow matching framework eliminates the label y and reduces the
number of hidden dimensions to one.

Then, by analyzing the error accumulation from both the transformer approximation (Lemma J.8)
and the local polynomial approximations (Lemma J.5, Lemma J.6, and Lemma J.7), we establish
a bound on the velocity approximation error over a bounded domain.

Lemma J.9 (Velocity Approximation with Transformers on Bounded Domain). Assume As-
sumption I.1 and Assumption I.3. Let t0, T ∈ (0, 1). Let Cx(β, C2) and C3 be two positive
constants. Let ϵlow := C3N

−β (logN)(dx+k1)/2. Then, there exist a transformer uθ(x, t) ∈ T h,s,r
R

such that for all x ∈ [−Cx

√
logN,Cx

√
logN ]dx , t ∈ [t0, T ] and pt(x) ≥ ϵlow, it holds∫ T

t0

∫
∥ut(x)− uθ(x, t)∥22(pt(x))2dxdt ≲

( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2B2N−2β(logN)
3dx
2

+k1+1,

Furthermore, the transformer parameter bounds satisfy

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4dx+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2

+1
)
; CE = O(1); CT = O(

√
logN).

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof. We use the notation “≲” in our derivation when an inequality holds up to a constant factor.

We prove Lemma J.9 with following two steps.

• Step A: Approximate velocity with constructed function. We approximate the com-
ponents Φ1(x, t), Φ2(x, t), and Φ3(x, t) using local polynomials Ψ1(x, t), Ψ2(x, t), and
Ψ3(x, t), respectively. Based on the velocity decomposition given in Lemma J.1, we con-
struct an approximation Ψ(x, t) by combining these polynomial components to approximate
the full velocity field ut(x).

3Please see Section H for a detailed proof.
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• Step B: Approximate with Transformers. We leverage the universal approximation of
transformers (Section H) to approximate the constructed function Ψ. Based on this approxi-
mation, we derive the final velocity approximation rates with the required bounds on model
parameters.

By Lemma J.1, the velocity field ut(x) takes the form

ut(x) = Φ1(x, t)
−1 ·

( µ̇t

µt

· Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
,

where

Φ1(x, t) =

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =

∫
Rdx

(
x− µt · x1

σt

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Moreover, by Lemma J.4, the bound on the velocity field in ℓ∞-distance follows

∥ut(x)∥∞ (J.6)

≤ |µ̇t|
µt

· ∥x∥∞ +

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1)
(
By Lemma J.4

)
≲

|µ̇t|
µt

·
√

logN +

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (√logN + 1).
(
By x ∈ [−Cx

√
logN,Cx

√
logN ]dx

)
Set the transformer network output bound CT equal to the right-hand side of the expression. Then
we are now ready to present the proof of Lemma J.9.

• Step A: Approximation via Local Polynomial.
We construct the approximator for ut(x) based on Lemma J.5, Lemma J.6, and Lemma J.7.
Specifically, we define Ψ(x, t) ∈ Rdx with each element given by

Ψ(x, t)[i] := min

{
µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]

Ψc
1

, ∥ut(x)∥∞
}
. (J.7)

The first element consists of the approximators for Φ1(x, t), Φ2(x, t) and Φ3(x, t). The
second element ensures that Ψ(x, t) does not output value larger than the ∥ut(x)∥∞.
Notice that, for all i ∈ [dx], the difference between Ψ(x, t)[i] and ut(x)[i] follows

|ut(x)[i]−Ψ(x, t)[i]|
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=

∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Φ1

− µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]

Ψc
1

∣∣∣∣(
By the definition of ut and Ψ(x, t)

)
≤
∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Ψc
1

− µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]

Ψc
1

∣∣∣∣︸ ︷︷ ︸
(T1)

+

∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Φ1

− µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Ψc
1

∣∣∣∣︸ ︷︷ ︸
(T2)

.

(
By triangle inequality

)
Next, we bound (T1) and (T2).

– Step A.1: Bound term (T1). Recall Definition J.1. By the definition of ϵlow, we set

Ψc
1(x, t) := max

{
Ψ1(x, t), C3 ·N−β (logN)

dx+k1
2

}
.

By Lemma J.5, we have

|Ψ1(x, t)− pt(x)| ≲ BN−β(logN)
dx+k1

2 , (J.8)

and (J.8) implies

pt(x)−KBN−β (logN)
dx+k1

2 ≤ Ψ1(x, t),

for some positive constant K. Next, recall that we consider

C3N
−β (logN)

dx+k1
2 ≤ pt(x).

By setting C3 = 2KB, it holds

KBN−β (logN)
dx+k1

2 =
C3

2
N−β (logN)

dx+k1
2 ≤ pt(x)/2,

leading to

pt(x)− pt(x)/2 ≤ pt(x)−KBN−β (logN)
dx+k1

2 ≤ Ψ1(x, t).

As a result, pt(x)/2 ≤ Ψ1 ≤ Ψc
1 holds.

This allows us to replace the approximator Ψc
1 with pt(x) by dropping constant 1/2.

Then,

(T1) (J.9)

=

∣∣∣∣ µ̇tΦ2[i]/µt + (σ̇t − µ̇tσt/µt)Φ3[i]

Ψc
1

− µ̇tΨ2[i]/µt + (σ̇t − µ̇tσt/µt)Ψ3[i]

Ψc
1

∣∣∣∣
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≤ 2

pt

∣∣∣∣ µ̇t

µt

·
(
Φ2[i]−Ψ2[i]

)
+

(
σ̇t −

µ̇tσt
µt

)
·
(
Φ3[i]−Ψ3[i]

)∣∣∣∣ (
By Ψc

1 > pt(x)/2
)

≤ 2

pt

|µ̇t|
µt

· |Φ2[i]−Ψ2[i]|+
2

pt

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣ · |Φ3[i]−Ψ3[i]|
(
By triangle inequality

)
≲

1

pt
·
(
|µ̇t|
µt

+

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣) ·BN−β(logN)
dx+k1+1

2
(
By Lemma J.6 and Lemma J.7

)
≤ 1

pt
·
(
|µ̇t|
µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) ·BN−β(logN)
dx+k1+1

2
(
By σt ∈ [0, 1]

)
≲

1

pt
·BN−β(logN)

dx+k1+1
2 .

(
By Assumption I.2

)
Next, we bound (T2).

– Step A.2: Bound term (T2). By Lemma J.4 and ∥x∥2 ≲
√
logN , it holds

|ut(x)[i]|

≤ |µ̇t|
µt

·
√
logN +

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣ · (√logN + 1)

=

(
|µ̇t|
µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) ·
√

logN +

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣,
for all i ∈ [dx]. Next, by the decomposition of velocity in Lemma J.1, it holds

µ̇t

µt

Φ2[i] +

(
σ̇t −

µ̇tσt
µt

)
Φ3[i] ≲ Φ1

(
|µ̇t|
µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) ·
√

logN + Φ1

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣.
(J.10)

Therefore,

(T2) (J.11)

≤
∣∣∣∣ µ̇t

µt

Φ2[i] +

(
σ̇t −

µ̇tσt
µt

)
Φ3[i]

∣∣∣∣ · ∣∣∣∣ 1Φ1

− 1

Ψ1

∣∣∣∣
≲ Φ1

(( |µ̇t|
µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣)√logN +

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) ·
∣∣∣∣ 1Φ1

− 1

Ψ1

∣∣∣∣ (
By (J.10)

)
=

1

Ψ1

·
(( |µ̇t|

µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣)√logN +

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) · |Φ1 −Ψ1|(
By factoring out 1/Φ1 and 1/Ψ1

)
≤ 1

pt
·
(( |µ̇t|

µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣)√logN +

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) · |Φ1 −Ψ1|
(
By Ψc

1 > pt(x)/2
)

≲
1

pt
·
(( |µ̇t|

µt

+

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣)√logN +

∣∣∣∣ σ̇tσt − µ̇t

µt

∣∣∣∣) ·BN−β(logN)
dx+k1

2(
By Lemma J.5

)
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Combining (J.9) and (J.11), we have

pt · |ut[i]−Ψ[i]| (J.12)
≤ (T1) · pt + (T2) · pt

≲
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)BN−β(logN)
dx+k1+1

2 ,
(
By (J.9) and (J.11)

)
for all i ∈ [dx].
Therefore,

p2t · ∥ut(x)−Ψ(x, t)∥22 (J.13)
≤ p2t · dx∥ut(x)−Ψ(x, t)∥2∞

(
By ∥ · ∥2 ≤ dx∥ · ∥∞

)
≲
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2B2N−2β(logN)dx+k1+1.
(
By (J.12)

)
• Step B: Approximation with Transformer.

By Lemma J.8, there exists a transformer uθ(x, t) ∈ T h,r,s
R such that∫ ∫

∥uθ(x, t)−Ψ(x, t)∥22dxdt ≤ ϵ2. (J.14)

By setting ϵ := N−β , it holds∫ ∫
p2t · ∥ut(x)− uθ(x, t)∥22dxdt

≤
∫ ∫

p2t · ∥ut(x)−Ψ(x, t)∥22dxdt+
∫ ∫

p2t · ∥Ψ(x, t)− uθ(x, t)∥22dxdt(
By triangle inequality

)
≤
∫ ∫

p2t · ∥ut(x)−Ψ(x, t)∥22dxdt+
∫ ∫

∥Ψ(x, t)− uθ(x, t)∥22dxdt (
By 0 ≤ pt(x) ≤ 1

)
≲
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2B2N−2β(logN)dx+k1+1

∫ ∫
dxdt+

∫ ∫
∥Ψ(x, t)− uθ(x, t)∥22dxdt(

By (J.13)
)

≤
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2B2N−2β(logN)
3dx
2

+k1+1 +

∫ ∫
∥Ψ(x, t)− uθ(x, t)∥22dxdt(
By ∥x∥∞ ≤ Cx

√
logN and t ∈ [0, 1]

)
≲
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2B2N−2β(logN)
3dx
2

+k1+1.
(
By (J.14) and ϵ = N−β

)
By (J.6) and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , we have

∥ut(x)∥∞ = O(
√

logN),
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and by (J.12) we have

|ut[i]−Ψ[i]| = O(N−β(logN)
dx+k1+1

2 ).

This implies

∥Ψ(x, t)∥2 = O(
√

logN +N−β(logN)
dx+k1+1

2 ).

We take a looser bound on Ψ(x, t) such that it holds for all dx:

∥Ψ(x, t)∥2 ≤ dx∥Ψ(x, t)∥∞ = O((logN)
dx+k1+1

2 ).

Then, the parameter bounds follow Lemma J.8 with ϵ = N−β . Therefore, we have

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4dx+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2

+1
)
; CE = O(1); CT = O(

√
logN).

This completes the proof.

J.3 Main Proof of Theorem I.1
We establish the velocity approximation with transformers in Lemma J.9. However, it is valid
under two settings: (i) the bounded domain x ∈ [−Cx

√
logN,Cx

√
logN ]dx with some constant

Cx(β, C2) (ii) the mild and high density region pt(x) ≥ ϵlow. To obtain general approximation
results, we introduce two additional lemmas to tackle the uncontrolled region.

Lemma J.10 (Truncation of x, Modified from Lemma A.1 of [Fu et al., 2024]). Assume As-
sumption I.1. Then, for any R4 > 1, t > 0, the following hold∫

∥x∥∞>R4

pt(x)dx ≲ Rdx−2
4 exp

(
− C2R

2
4

2(µ2
t + C2σ2

t )

)
,∫

∥x∥∞>R4

∥ut(x)∥22 · pt(x)dx ≲ Rdx
4 exp

(
− C2R

2
4

2(µ2
t + C2σ2

t )

)
.

Proof. For the first inequality, it follows∫
∥x∥∞>R4

pt(x)dx

≲
∫
∥x∥∞>R4

exp

(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma J.3

)
≤
∫
∥x∥2>R4

exp

(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx−2

4 exp

(
− C2R

2
4

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2 and dropping constant terms

)
81



For the second inequality, it follows∫
∥x∥∞≥R4

∥ut(x)∥22 · pt(x)dx

≲
∫
∥x∥∞≥R4

∥ut(x)∥22 · exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma J.3

)
≲
∫
∥x∥∞≥R4

(
|µ̇t|
µt

· ∥x∥∞ +

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1)

)2

exp

(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx(

By Lemma J.4
)

≲
∫
∥x∥∞≥R4

∥x∥22 exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By Assumption I.2

)
≤
∫
∥x∥2≥R4

∥x∥22 exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx

4 exp

(
− C2R

2
4

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)

This completes the proof.

Lemma J.11 (Bound on Low-Density Region, Modified from Lemma A.2 of [Fu et al., 2024]).
Assume Assumption I.1. Then, for any R5, ϵlow > 0, the following two inequalities hold∫

∥x∥∞≤R5

1{|pt(x)| < ϵlow} · pt(x)dx ≤ Rdx
5 · ϵlow,∫

∥x∥∞≤R5

1{|pt(x)| < ϵlow} · ∥ut(x)∥22 · pt(x)dx ≲ Rdx+2
5 · ϵlow.

Proof. The proof for the first inequality is identical to [Fu et al., 2024].

For the second inequality, it follows,∫
∥x∥∞≤R5

1{|pt(x)| < ϵlow} · ∥ut(x)∥22 · pt(x)dx

≲
∫
∥x∥∞≤R5

1{|pt(x)| < ϵlow} ·
(
|µ̇t|
µt

· ∥x∥∞ +

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1)

)2

· pt(x)dx(
By Lemma J.4

)
≤ ϵlow

∫
∥x∥∞≤R5

(
|µ̇t|
µt

· ∥x∥∞ +

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1)

)2

dx

≲ Rdx+2
5 · ϵlow.

(
By Assumption I.2

)

This completes the proof.
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Next, we present the formal proof of Theorem I.1.

Theorem J.1 (Theorem I.1 Restated: Velocity Approximation with Transformers under Generic
Hölder Smoothness). Assume Assumption I.1 and Assumption I.2. For any precision parameter
0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all
t ∈ [t0, T ] with t0, T ∈ (0, 1), there exists a transformer uθ(x, t) ∈ T h,s,r

R such that∫ T

t0

∫
Rdx

∥ut(x)− uθ(x, t)∥22 · pt(x)dxdt = O
(
B2N−β · (logN)dx+

β
2
+1
)
.

Furthermore, the parameter bounds in transformer network T h,s,r
R satisfy

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4dx+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2

+1
)
; CE = O(1); CT = O(

√
logN).

where O(·) hides all polynomial factors depending on dx, d, L, β, C1, C2.

Proof of Theorem I.1. Let R6 := Cx

√
logN and Cx :=

√
4β(µ2

t + C2σ2
t )/C2. Further, we have

CT = O(
√
logN); ϵlow = C3N

−β (logN)(dx+k1)/2 .
(
By Lemma J.9

)

First, we decompose the target into three components and bound each of them∫ T

t0

∫
∥uθ − ut∥22 · pt(x)dxdt

=

∫ T

t0

∫
∥x∥∞>R6

∥uθ − ut∥22pt(x)dx︸ ︷︷ ︸
(T1)

dt+

∫ T

t0

∫
∥x∥∞≤R6

1{pt(x) < ϵlow}∥uθ − ut∥22pt(x)dx︸ ︷︷ ︸
(T2)

dt

+

∫ T

t0

∫
∥x∥∞≤R6

1{pt(x) ≥ ϵlow}∥uθ − ut∥22pt(x)dxdt︸ ︷︷ ︸
(T3)

.

• Bound on (T1). It holds∫
∥x∥∞>R6

∥uθ − ut∥22 · pt(x)dx

≤ 2

∫
∥x∥∞>R6

∥uθ∥22 · pt(x) dx+ 2

∫
∥x∥∞>R6

∥ut∥22 · pt(x)dx
(
By expanding ℓ2-norm

)
≤ 2dx

∫
∥x∥∞>R6

∥uθ∥2∞ · pt(x)dx+ 2

∫
∥x∥∞>R6

∥ut∥22 · pt(x)dx
(
By ∥·∥22 ≤ dx∥·∥2∞

)
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≲
∫
∥x∥∞>R6

logN · pt(x)dx︸ ︷︷ ︸
(T1.1)

+

∫
∥x∥∞>R6

∥ut∥22 · pt(x)dx︸ ︷︷ ︸
(T1.2)

.

(
By CT = O(

√
logN) from Lemma J.9

)
We bound (T1.1) by

(T1.1)

= logN ·
∫
∥x∥∞>R6

pt(x)dx

≲ logN ·Rdx−2
6 exp

(
− C2R

2
6

2(µ2
t + C2σ2

t )

) (
By Lemma J.10

)
≲ logN · (logN)

dx−2
2 N−β.

(
By the choice of R6 = Cx

√
logN and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
We bound (T1.2) by

(T1.2)

=

∫
∥x∥∞>R6

∥ut∥22 · pt(x) dx

≲

(
|µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2

·Rdx
6 exp

(
− C2R

2
6

2(µ2
t + C2σ2

t )

) (
By Lemma J.10

)
≲

(
|µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2

· (logN)
dx
2 N−β.(

By the choice of R6 = Cx

√
logN and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
Therefore,

(T1) ≲ (T1.1) + (T1.2) ≲

(
|µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2

· (logN)
dx
2 ·N−β.

• Bound on (T2). It holds∫
∥x∥∞≤R6

1{pt(x) < ϵlow} · ∥uθ − ut∥22 · pt(x)dx

≤ 2

∫
∥x∥∞≤R6

1{pt(x) < ϵlow} ·
(
∥uθ∥22 + ∥ut∥22

)
· pt(x)dx

(
By expanding ℓ2-norm

)
≤ 2

∫
∥x∥∞≤R6

1{pt(x) < ϵlow} ·
(
dx · ∥uθ∥2∞ + ∥ut∥22

)
· pt(x)dx

(
By ∥ · ∥22 ≤ dx∥ · ∥2∞

)
≲
∫
∥x∥∞≤R6

1{pt < ϵlow} · ∥uθ∥2∞ · pt(x)dx︸ ︷︷ ︸
(T2.1)

+

∫
∥x∥∞≤R6

1{pt < ϵlow} · ∥ut∥22 · pt(x) dx︸ ︷︷ ︸
(T2.2)

.
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We bound (T2.1) by

(T2.1)

=

∫
∥x∥∞≤R6

1{pt(x) < ϵlow} · ∥uθ(x)∥2∞ · pt(x)dx

≲ logN ·
∫
∥x∥∞≤R6

1{pt(x) < ϵlow} · pt(x)dx
(
By CT = O(

√
logN) from Lemma J.9

)
≲ logN · ϵlowRdx

6

(
By Lemma J.11

)
≲ logN · (logN)

dx
2 · ϵlow

(
By the choice of R6 = Cx

√
logN and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
≲ logN(logN)

dx
2 ·N−β (logN)

dx+k1
2

(
By the choice of ϵlow = C3N

−β (logN)
dx+k1

2
)

We bound (T2.2) by

(T2.2)

=

∫
∥x∥∞≤R6

1{pt(x) < ϵlow} · ∥ut∥22 · pt(x)dx

≲ ϵlowR
dx+2
6

(
By Lemma J.11

)
≲ ϵlow(logN)

dx+2
2

(
By the choice of R6 = Cx

√
logN and Cx =

√
2β(µ2

t + C2σ2
t )/C2

)
≤ N−β (logN)

dx+k1
2 · (logN)

dx+2
2 .

(
By the choice of ϵlow = C3N

−β (logN)
dx+k1

2
)

Therefore,

(T2) ≲ (T2.1) + (T2.2) ≲ N−β(logN)dx+
k1
2
+1.

• Bound on (T3). We bound term (T3) by

(T3)

=

∫ T

t0

∫
∥x∥∞≤R6

1{pt(x) ≥ ϵlow} · ∥uθ − ut∥22 · pt(x)dxdt

=

∫ T

t0

∫
∥x∥∞≤R6

1

pt
1{pt(x) ≥ ϵlow} · dx∥uθ − ut∥22 · (pt(x))2dxdt

(
By multiplying pt/pt

)
≤
∫ T

t0

∫
∥x∥∞≤R6

1

ϵlow
1{pt(x) ≥ ϵlow} · dx∥uθ − ut∥22 · (pt(x))2dxdt

(
By 1/pt ≤ 1/ϵlow

)
≤ dx
ϵlow

·
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2 ·B2N−2β(logN)
3dx
2

+k1+1 (
By Lemma J.9

)
≲ Nβ(logN)

−(dx+k1)
2 ·

( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2 ·B2N−2β(logN)
3dx
2

+k1+1(
By the choice of ϵlow

)
=
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2 ·B2N−β · (logN)dx+
k1
2
+1.
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By the upper-bound on (T1), (T2) and (T3), we have∫ T

t0

∫
∥ut(x)− uθ(x, t)∥22 · pt dxdt

≲ (T1) + (T2) + (T3)
(
By t0, T ∈ (0, 1)

)
=
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2 ·O (B2N−β · (logN)dx+
k1
2
+1
)

≤
( |µ̇t|
µt

+

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣)2 ·O (B2N−β · (logN)dx+
β
2
+1
) (

By k1 ≤ β
)

≤ O
(
B2N−β · (logN)dx+

β
2
+1
)
.

(
By Assumption I.2

)

Furthermore, the transformer parameter bounds follow Lemma J.9.

This completes the proof.
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K Proof of Theorem I.2
In this section, we derives a tighter error bound for velocity approximation using transformers.

Organizations. Section K.1 introduces auxiliary lemmas. Section K.2 establishes a bound on
the velocity approximation error over a bounded domain by applying the universal approxima-
tion of transformers. Section K.3 presents the main proof by incorporating the bounded-domain
approximation error and controlling the unbounded region using the sub-Gaussian assumption.

K.1 Auxiliary Lemmas
In this section, we introduce auxiliary lemmas for velocity field approximation. Specifically,
Lemma K.1 applies a stronger Hölder assumption to decompose the density function pt(x).
Lemma K.2 further decomposes the velocity into two components, differing from the decom-
position under a generic Hölder assumption. Then, Lemma K.3 and Lemma K.4 establish upper
and lower bounds for the decomposed components and the velocity in ℓ∞-distance, respectively.

We begin with the density function decomposition.

Lemma K.1 (Density Function Decomposition, Lemma B.1 of [Fu et al., 2024]). Assume As-
sumption I.3. Then, the density function pt(x) and ∇ log pt(x) follow the decomposition:

pt(x) =
1

(µ2
t + C2 · σ2

t )
dx/2

exp

(
−C2∥x∥22

2(µ2
t + C2σ2

t )

)
h(x, t),

∇ log pt(x) =
−C2x

µ2
t + C2σ2

t

+
∇h(x, t)
h(x, t)

,

where h(x, t) :=
∫ f(x1)

(2π)dx/2σ̂dx
t

exp
(
−∥x1−µ̂tx∥22

2σ̂t

)
dx1, σ̂t := σt

(µ2
t+C2σ2

t )
1/2 and µ̂t :=

µt

(µ2
t+C2σ2

t )
.

Then, we give the velocity field decomposition.

Lemma K.2 (Velocity Decomposition under Stronger Hölder Smoothness Assumption). As-
sume Assumption I.3. Then, the velocity field ut(x) follows the decomposition:

ut(x) =
µ̇t

µt

x− (σ̇tσt −
µ̇tσ

2
t

µt

)

(
−C2x

µ2
t + C2σ2

t

+
∇h(x, t)
h(x, t)

)
.

Remark K.1. The key aspect of Lemma K.2 is the velocity field ut(x) having a denominator
bounded away from zero. Specifically, we apply f(x1) ≥ C to derive the lower bound on h(x, t)
(Lemma K.3). This removes the need to impose an additional lower threshold on the density
function approximator. In contrast, under Assumption I.1, the approximator is constrained to stay
above the threshold ϵlow to prevent explosion, and therefore leads to slower approximation rate.
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Proof. Our proof builds on [Fu et al., 2024].

By Lemma J.1, the velocity field ut(x) has the form

ut(x) = Φ1(x, t)
−1
( µ̇t

µt

· Φ2(x, t) + (σ̇t −
µ̇tσt
µt

)Φ3(x, t)
)
,

where

Φ1(x, t) =

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ2(x, t) = x

∫
Rdx

1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1,

Φ3(x, t) =

∫
Rdx

(
x− µt · x1

σt

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
· q(x1) dx1.

Furthermore, we have

σt∇pt(x)

= − σt

∫ (
x− µt · x1

σ2
t

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
q(x1) dx1

= −
∫ (

x− µt · x1
σt

)
· 1

σdx
t (2π)dx/2

exp

(
−∥x− µt · x1∥2

2σ2
t

)
q(x1) dx1

= − Φ3(x, t).

Therefore,

ut(x)

= Φ−1
1

( µ̇t

µt

· Φ2 + (σ̇t −
µ̇tσt
µt

)Φ3

)
=
µ̇t

µt

x− (σ̇t −
µ̇tσt
µt

)σt∇ log pt
(
By Φ2 = xΦ1 and Φ3 = −σt∇pt

)
=
µ̇t

µt

x− (σ̇tσt −
µ̇tσ

2
t

µt

)

(
−C2x

µ2
t + C2σ2

t

+
∇h(x, t)
h(x, t)

)
.

(
By Lemma K.1

)
This completes the proof.

The next lemma bounds h(x, t).
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Lemma K.3 (Lemma B.8 of [Fu et al., 2024]). Assume Assumption I.3. Then, it holds

C1 ≤ h(x, t) ≤ B,

∥∥∥∥ σ̂tµ̂t

∇h(x, t)
∥∥∥∥
∞

≤
√

2

π
B.

Lemma K.3 ensures that h(x, t) remains bounded above and below by a constant. As a result,
ut(x) stays finite for all x. This eliminates the need for an additional threshold ϵlow (Definition J.1)
in the constructed approximator to prevent divergence, leading to a faster approximation rate.

Bound on Velocity Field. We give the ℓ∞-bound on ut(x) under stronger Hölder assumption.

Lemma K.4 (Bounds on Velocity Field). Assume Assumption I.3. Then, there exist a positive
constant C6 such that

∥ut(x)∥∞ ≤
∣∣∣∣ µ̇t

µt

+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
C2

µ2
t + C2σ2

t

)

∣∣∣∣∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣.
Proof. Recalling from Lemma K.2 and Lemma K.3, the velocity field has the expression

ut(x) =
µ̇t

µt

x− (σ̇tσt −
µ̇tσ

2
t

µt

)

(
−C2x

µ2
t + C2σ2

t

+
∇h(x, t)
h(x, t)

)
,

where σ̂t = σt/
√
µ2
t + C2σ2

t , µ̂t = µt/(µ
2
t + C2σ

2
t ) and

h(x, t) =

∫
f(x1)

1

(2π)dx/2 · σ̂dx
t

· exp

(
−∥x1 − µ̂t · x∥22

2σ̂t

)
dx1.

By Lemma K.3 and Assumption I.2, it holds

∥∇h(x, t)
h(x, t)

∥∞ ≤ µ̂t

σ̂t
·
√

2

π
BC1 = O(

1

σt
).

(
By Lemma K.3

)

Therefore,

∥ut(x)∥∞

≤
∣∣∣∣ µ̇t

µt

+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
C2

µ2
t + C2σ2

t

)

∣∣∣∣∥x∥∞ +

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣∥∥∥∥∇h(x, t)h(x, t)

∥∥∥∥
∞

(
By triangle inequality

)
≤
∣∣∣∣ µ̇t

µt

+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
C2

µ2
t + C2σ2

t

)

∣∣∣∣∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣, (
By (

(
By Lemma K.3

)
)
)

for some positive constant C6.

This completes the proof.
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K.2 Velocity Approximation on Bounded Domain
In this section, we approximate the velocity field ut(x) using transformers in two steps. The first
step constructs two compactly supported continuous functions, Q1(x, t) and Q2(x, t), as approxi-
mations of h(x, t) and ∇h(x, t) (Lemma K.5 and Lemma K.6). The second step applies the univer-
sal approximation of transformers to approximateQ1(x, t) andQ2(x, t) (Lemma K.7). Combining
these steps, we present the velocity approximation on a bounded domain in Lemma K.8.

Before proceeding, we reiterate the expression of decomposed velocity under Assumption I.3.

ut(x) =
µ̇t

µt

x− (σ̇tσt −
µ̇tσ

2
t

µt

)

(
−C2x

µ2
t + C2σ2

t

+
∇h(x, t)
h(x, t)

)
.

Then, we construct two local polynomials as the approximators for h(x, t), and ∇h(x, t).

Approximation of h(x, t) and ∇h(x, t). The differences between

h(x, t) =

∫
f(x1) ·

1

(2π)dx/2 · σ̂dx
t

· exp

(
−∥x1 − µ̂t · x∥22

2σ̂t

)
dx1,

and

pt(x) =

∫
q(x1) ·

1

(2π)dx/2 · σdx
t

· exp

(
−∥x1 − µt · x∥22

2σt

)
dx1,

lie in (i) the target function f(x1) and q(x1) (ii) the path coefficients σ̂t, µ̂t and σt, µt.

We define local polynomial Ψ1(x, t) as the approximator for pt(x) in (J.4). Given the differences
between h and pt, the construction of an approximator for h(x, t) follows the formulation of Ψ1.

Formally, we approximate h(x, t) around x with:

Q1(x, t) :=
∑

v∈[N ]dx

∑
∥nx∥1≤k1

R
∥nx∥1
B

nx!

∂nxf

∂xnx

∣∣∣∣∣
x=RB( v

N
− 1

2
)

g1(x, nx, v, t), (K.1)

where nx ∈ Zdx is a multi-index, RB > 0 is a constant depending on the Hölder ball radius B,

• g1(x, nx, v, t) :=
∏dx

i=1

∑
k2<p g2(x[i], nx[i], v[i], k2), and

• g2(x[i], nx[i], v[i], k2) :=
1

σ̂t

√
2π

∫ (x1[i]
RB

+ 1
2
− v[i]

N

)nx[i]
1
k2!

(
−|x[i]−µ̂tx1[i]2|2

2σ̂t

)k2

dx1.

Remark K.2. Given the differences between h(x, t) and pt(x), we replace (i) ∂nxΦ1/∂x
nx with

∂nxf/∂xnx (ii) σt and µt with σ̂t and µ̂t respectively. Then, the formulation of Q1(x, t) follows
constructions identical to the density function approximator Ψ1(x, t).
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Remark K.3. When the context is clear, we refer to Q1(x, t) as a local polynomial and distin-
guish it from Ψ1(x, t). The generic Hölder assumption (Assumption I.1) applies to Ψ1(x, t), while
the stronger Hölder assumption (Assumption I.3) applies to Q1(x, t).

Then, we approximate h(x, t) using Q1(x, t).

Lemma K.5 (Approximate of h(x, t), Lemma B.4 of [Fu et al., 2024]). Assume Assumption I.3.
Let Q1(x, t) be the approximator of h(x, t), and Cx(dx, β, C1,C2) be a positive constant. Then,
for any t ∈ [0, 1] and x ∈ [−Cx

√
logN,Cx

√
logN ]dx , it holds

|Q1(x, t)− h(x, t)| ≲ BN−β (logN)
k1
2 .

Based on the approximation of h(x, t) using local polynomial Q1(x, t), we construct a approxi-
mator of ∇h(x, t) following similar formulation

Definition K.1 (Approximator of ∇h(x, t)). We defineQ2(x, t) as the approximator of ∇h(x, t),
with each component Q2[i] following the form of local polynomial presented in (K.1).

Then, we approximate h′(x, t) and ∇h(x, t) with Q2(x, t).

Lemma K.6 (Approximate ∇h(x, t), Lemma B.6 of [Fu et al., 2024]). Assume Assumption I.3.
Let Cx(dx, β, C1, C2) be a positive constant. Then, for all x ∈ [−Cx

√
logN,Cx

√
logN ]dx , i ∈

[dx] and t > 0, it holds∣∣∣∣Q2(x, t)[i]−
σ̂t
µ̂t

· ∇h(x, t)[i]
∣∣∣∣ ≲ BN−β (logN)

k1+1
2 .

Approximate Velocity Approximator with Transformers Before deriving the velocity approx-
imation with transformers on a bounded domain, we first approximate the velocity approximator
constructed with Q1(x, t) and Q2(x, t) using transformers.

Lemma K.7 (Approximate Velocity Approximators with Transformers Network). Assume As-
sumption I.3. Let Cx be a positive constant dependent on dx, β, C1 and C2. Then, for any
x ∈ [−Cx

√
logN,Cx

√
logN ]dx and t ∈ [0, 1], there exist a transformer T ∈ T h,s,r

R such that,∫ 1

0

∫
∥T (x, t)− µ̇t

µt

x+ (σ̇tσt −
µ̇tσ

2
t

µt

)
( −C2x

µ2
t + C2σ2

t

+
µ̂t∇Q2[i]

σ̂tQ1

)
∥22dxdt ≤ ϵ2.

Further, the parameter bounds in the transformer network class follows Lemma J.8.

Proof. The proof closely follows Lemma J.8.

Approximate Velocity with Transformers on Bounded Domain. We incorporate the approxi-
mations with Q1, Q2 and T (x, t) to derive the velocity approximation on a bounded domain.
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Lemma K.8 (Velocity Approximation with Transformers on Bounded Domain). Assume As-
sumption I.3. Then, for any x ∈ [−Cx

√
logN,Cx

√
logN ]dx and t ∈ [t0, T ] with a positive

constant Cx(dx, β, C1, C2) and t0, T ∈ (0, 1), there exist a uθ(x, t) ∈ T h,s,r
R such that∫ T

t0

∫
∥x∥∞≤Cx

√
logN

∥ut(x)− uθ(x, t)∥22pt(x)dxdt ≲ B2N−2β(logN)k1+dx .

Further, the parameter bounds in the transformer network class follows Lemma J.9.

Proof. Building upon [Hu et al., 2025b, Fu et al., 2024], we prove Lemma K.8 with two steps.

• Step 1: Approximate velocity with constructed function. We approximate the decom-
posed velocity field (Lemma K.2) and its components with approximator Q1(x, t) and
Q2(x, t).

• Step 2: Approximate with transformers. We apply the universal approximation of trans-
formers presented in Section H to approximate the constructed function in Step 1.

Before proceeding, we recall some previous lemmas to prepare our proof.

By Lemma K.2, the velocity follows the decomposition under Assumption I.3:

ut(x) =
µ̇t

µt

x− (σ̇tσt −
µ̇tσ

2
t

µt

)

(
−C2x

µ2
t + C2σ2

t

+
∇h(x, t)
h(x, t)

)
,

where σ̂t = σt/(µ
2
t + C2σ

2
t )

1/2, µ̂t = µt/(µ
2
t + C2σ

2
t ) and

h(x, t) =

∫
f(x1)

1

(2π)dx/2 · σ̂dx
t

· exp

(
−∥x1 − µ̂t · x∥22

2σ̂t

)
dx1.

Furthermore, by Lemma K.4, the bound on ut(x) in ℓ∞-distance follows

∥ut(x)∥∞ ≤
∣∣∣∣ µ̇t

µt

+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
C2

µ2
t + C2σ2

t

)

∣∣∣∣∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣.
First, we apply ∥x∥2 ≲

√
logN to Lemma K.4. Next, we apply Lemma K.4 and Lemma K.6 to

construct the first-step approximator Q(x, t) ∈ Rdx , with each element defined by:

Q[i] := min

{
µ̇t

µt

x− (σ̇tσt −
µ̇tσ

2
t

µt

)

(
−C2x

µ2
t + C2σ2

t

+
µ̂t∇Q2[i]

σ̂tQ1

)
, ∥ut(x)∥∞

}
. (K.2)

The first element consists of approximators for h(x, t) and ∇h(x, t). The second element ensures
that Ψ(x, t) does not output value larger than the maximum of ut(x) in ℓ∞.
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• Step A: Approximation via Local Polynomial.
By symmetry, for all i ∈ [dx], the difference between Q(x, t)[i] and ut(x)[i] follows

|ut[i]−Q[i]|

=

∣∣∣∣(σ̇tσt − µ̇tσ
2
t

µt

)

(
∇h[i]
h

− µ̂tQ2[i]

σ̂tQ1

)∣∣∣∣
≤
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣∣∣∣∣(∇h[i]
h

− µ̂tQ2[i]

σ̂tQ1

)∣∣∣∣
=

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣ ∣∣∣∣∇h[i]h
− ∇h[i]

Q1

)

∣∣∣∣︸ ︷︷ ︸
(T1)

+

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣ ∣∣∣∣∇h[i]Q1

− µ̂tQ2[i]

σ̂tQ1

∣∣∣∣︸ ︷︷ ︸
(T2)

.

(
By triangle inequality

)
Next, we bound (T1) and (T2).
Step A.1: Bound (T1). By Lemma K.3, we have C1 ≤ h ≤ B and∥∥∥∥ σ̂tµ̂t

∇h(x, t)
∥∥∥∥
∞

≤
√

2

π
B.

Moreover, by Lemma K.5, it holds

|Q1(x, t)− h(x, t)| ≲ BN−β (logN)
k1
2 .

It implies that

h(x, t)−K ′BN−β (logN)
k1
2 ≤ Q1(x, t),

for some positive constant K ′. This gives

|Q1(x, t)| ≲ BN−β(logN)
k1
2 . (K.3)

Therefore,

(T1) =

∣∣∣∣∇h[i]h
− ∇h[i]

Q1

∣∣∣∣
≤ |∇h[i]|

∣∣∣∣h−Q1

hQ1

∣∣∣∣
≤
√

2

π

µ̂t

σ̂t
B

∣∣∣∣h−Q1

hQ1

∣∣∣∣ (
By Lemma K.3

)
≲
B

σt
N−β(logN)

k1
2 .
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Step 1.2: Bound (T2). It holds

(T2) =

∣∣∣∣∇h[i]Q1

− µ̂tQ2[i]

σ̂tQ1

∣∣∣∣
≤ µ̂t

σ̂t

∣∣∣∣∣Q2[i]− σ̂t

µ̂t
∇h[i]

Q1

∣∣∣∣∣ (
By factoring out µ̂t/σ̂t

)
≲
B

σt
N−β(logN)

k1+1
2 .

(
By (K.3) and Lemma K.6

)
Combining bounds on (T1) and (T2), it holds

|ut[i]−Q[i]| (K.4)

≤
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣ · ((T1) + (T2))

≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣BN−β(logN)
k1+1

2 ,

for all i ∈ [dx].
Therefore, by symmetry, it holds

∥ut(x)−Q(x, t)∥22 (K.5)
≤ dx∥ut(x)−Q(x, t)∥2∞

(
By ∥ · ∥2 ≤ dx∥ · ∥∞

)
≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣2B2N−2β(logN)k1 .
(
By (K.4)

)
• Step B: Approximation with Transformers.

By Lemma K.7, there exists a transformer uθ(x, t) ∈ T h,r,s
R such that∫ ∫

∥uθ(x, t)−
µ̇t

µt

x+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
−C2x

µ2
t + C2σ2

t

+
µ̂t∇Q2[i]

σ̂tQ1

)∥22dxdt ≤ ϵ2.

By setting ϵ := N−β , the velocity approximation using transformers follows∫ ∫
pt∥ut(x)− uθ(x, t)∥22dxdt

≤
∫ ∫

pt∥ut(x)−Q(x, t)∥22dxdt+
∫ ∫

pt∥Q(x, t)− uθ(x, t)∥22dxdt(
By triangle inequality

)
≤
∫ ∫

∥ut(x)−Q(x, t)∥22dxdt+
∫ ∫

∥Q(x, t)− uθ(x, t)∥22dxdt
(
By 0 ≤ pt(x) ≤ 1

)
≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣2B2N−2β(logN)k1
∫ ∫

dxdt+

∫
∥Q(x, t)− uθ(x, t)∥22dxdt

(
By (K.5)

)
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≤
∣∣∣∣σ̇tσt − µ̇tσ

2
t

µt

∣∣∣∣2B2N−2β(logN)k1+dx +

∫
∥Q(x, t)− uθ(x, t)∥22dxdt(

By t ∈ (0, 1) and ∥x∥∞ ≤ Cx

√
logN

)
≲

∣∣∣∣σ̇tσt − µ̇tσ
2
t

µt

∣∣∣∣2B2N−2β(logN)k1+dx ,
(
By Lemma K.7

)
≲ B2N−2β(logN)k1+dx .

(
By Assumption I.2

)
By Lemma K.4, it holds

∥ut(x)∥∞

≤
∣∣∣∣ µ̇t

µt

+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
C2

µ2
t + C2σ2

t

)

∣∣∣∣ · ∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣. (
By Lemma K.4

)
≲ O(

√
logN).

(
By Assumption I.2

)

Therefore, we set transformer output bound CT := O(∥ut(x)∥∞). Then, the parameter bounds in
the transformer network follow Lemma J.9.

This completes the proof.

K.3 Main Proof of Theorem I.2
In Lemma J.9, we give the velocity field approximation using transformer on a bounded domain
x ∈ [−Cx

√
logN,Cx

√
logN ]dx under stronger Hölder assumption. To obtain general approxi-

mation result, we introduce the next lemma that bounds the uncontrolled region.

Lemma K.9 (Truncation of x, Modified from Lemma B.2 of [Fu et al., 2024]). Assume As-
sumption I.3. Then, for any R7 > 1 and t > 0, the following hold∫

∥x∥∞≥R7

pt(x)dx ≲ Rdx−2
7 exp

(
− C2R

2
7

2(µ2
t + C2σ2

t )

)
,∫

∥x∥∞≥R7

∥ut(x)∥22 · pt(x)dx ≲ Rdx
7 exp

(
− C2R

2
7

2(µ2
t + C2σ2

t )

)
.

Proof. The first part of the proof is identical to Lemma J.10

Recall Lemma J.3. The density function at time t is upper bounded by

pt ≤
C1

(µ2
t + C2σ2

t )
dx/2

· exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

) (
By dropping constant term

)
≲ exp

(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
.
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Furthermore, by Lemma K.4 we have

∥ut(x)∥∞ (K.6)

≤
∣∣∣∣ µ̇t

µt

+ (σ̇tσt −
µ̇tσ

2
t

µt

)(
C2

µ2
t + C2σ2

t

)

∣∣∣∣∥x∥∞ + C6

∣∣∣∣σ̇t − µ̇tσt
µt

∣∣∣∣.
≲ ∥x∥∞

(
By Assumption I.2

)
≤ ∥x∥2.

(
By ∥ · ∥∞ ≤ ∥ · ∥2

)

Therefore, the second inequality follows∫
∥x∥∞≥R7

∥ut(x)∥22pt(x)dx

≤ dx

∫
∥x∥∞≥R7

∥ut(x)∥2∞pt(x)dx
(
By ∥ · ∥2 ≤ dx∥ · ∥∞

)
≲
∫
∥x∥∞≥R7

∥x∥22 · pt(x)dx
(
By (K.6)

)
≲
∫
∥x∥∞≥R7

∥x∥22 · exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By Lemma J.3

)
≲
∫
∥x∥2≥R7

∥x∥22 · exp
(
− C2∥x∥22
2(µ2

t + C2σ2
t )

)
dx

(
By ∥x∥2 ≥ ∥x∥∞

)
≲ Rdx

7 exp

(
− C2R

2
7

2(µ2
t + C2σ2

t )

)
.

(
By Lemma D.2

)

This completes the proof.

Next, we present the main proof of Theorem I.2

Theorem K.1 (Theorem I.2 Restated: Velocity Approximation with Transformers under Stronger
Hölder Smoothness). Assume Assumption I.3 and Assumption I.2. For any precision parameter
0 < ϵ < 1 and smoothness parameter β > 0, let ϵ ≤ O(N−β) for some N ∈ N. Then, for all
t ∈ [t0, T ] with t0, T ∈ (0, 1), there exists a transformer uθ(x, t) ∈ T h,s,r

R such that∫ T

t0

∫
Rdx

∥ut(x)− uθ(x, t)∥22 · pt(x)dxdt = O
(
B2N−2β(logN)dx+β

)
,

Further, the parameter bounds in the transformer network class follows Theorem I.1.

Proof of Theorem I.2. Recall Lemma K.8, Lemma K.9. We have CT = O(
√
logN) and we set

R3 :=

√
4β(µ2

t + C2σ2
t ) logN

C2

. (K.7)

96



Then, it holds∫ T

t0

∫
Rdx

∥uθ(x)− ut(x)∥22pt(x)dxdt

=

∫ T

t0

∫
∥x∥∞>R3

∥uθ(x)− ut(x)∥22pt(x)dxdt+
∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x)− ut(x)∥22pt(x)dxdt

≤ 2

∫ T

t0

∫
∥x∥∞>R3

(
∥uθ(x)∥22 + ∥ut(x)∥22

)
pt(x)dxdt+

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x)− ut(x)∥22pt(x)dxdt(
By expanding ∥ · ∥22

)
≲
∫ T

t0

∫
∥x∥∞>R3

(logN + ∥ut(x)∥22) · pt(x)dxdt+
∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x)− ut(x)∥22pt(x)dxdt(
By CT = O(

√
logN)

)
≲ (logN ·Rdx−2

3 +Rdx
3 ) exp

(
− C2R

2
3

2(µ2
t + C2σ2

t )

)
+

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x)− ut(x)∥22pt(x)dxdt(
By Lemma K.9

)
≲ (logN)

dx
2 N−2β +

∫ T

t0

∫
∥x∥∞≤R3

∥uθ(x)− ut(x)∥22pt(x)dxdt
(
By (K.7)

)
≤ (logN)

dx
2 N−2β +B2N−2β(logN)k1+dx

(
By Lemma K.8

)
= O

(
B2N−2β(logN)k1+dx

)
.

(
By k1 ≤ β

)

Furthermore, the parameter bounds in transformer network follow Lemma K.8.

This completes the proof.
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L Proof of Theorem I.3
In this section, we prove Theorem I.3 following the three steps presented in the proof sketch.

Organizations. Section L.1 provides fundamental definitions of flow matching and discusses
key properties of the flow matching loss. Section L.2 introduces several auxiliary lemmas that
support our proof. Finally, Section L.3 presents the main proof of Theorem I.3.

L.1 Preliminaries
In this section, we consider affine conditional flows ψt(x|x1) = µtx1 + σtx follows Section 2.
Given a velocity approximator uθ, we aim to bound the following flow matching risk R(uθ):

R(uθ) :=

∫ T

t0

1

T − t0
E

Xt∼pt
[∥uθ(Xt, t)− ut(Xt)∥22] dt, (L.1)

where marginal probability path pt and marginal velocity field ut are induced by affine conditional
flow ψt(x|X1) = µtX1 + σtx follows (2.2), (2.3), (2.5) and (2.6).

In practice, we use conditional flow matching loss to train velocity estimator uθ:

Definition L.1 (Conditional Flow Matching). Let q be the ground truth distribution and the
normal distribution N(0, I) be the source distribution p. Considering affine conditional flows
ψt(x|x1) = µtX1 + σtx, we define the loss function and the conditional flow matching loss:

ℓ(x;uθ) :=
1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uθ(µtx+ σtX0, t)− (µ̇tx+ σ̇tX0)∥22]dt,

LCFM(uθ) :=
1

T − t0

∫ T

t0

E
X1∼q,X0∼N(0,I)

[∥uθ(µtx+ σtX0, t)− (µ̇tX1 + σ̇tX0)∥22]dt.

Remark L.1. Holderrieth et al. [2025] prove that the gradients of the flow matching loss (risk)
and the conditional flow matching loss coincide. Therefore, minimizing the flow matching loss
(risk) R(uθ) is equivalent to minimizing the conditional flow matching loss LCFM(uθ).

To better evaluate the estimator uθ, now we introduce the empirical flow matching risk R̂(uθ).

Definition L.2 (Empirical Risk). Consider a velocity estimator uθ ∈ T h,s,r
R and i.i.d training

samples {xi}ni=1, the empirical conditional flow matching loss L̂CFM(uθ) :=
1
n

∑n
i=1 ℓ(xi;uθ). Let

u⋆ := ut be the ground truth velocity field, we define empirical flow matching risk:

R̂(uθ) := L̂CFM(uθ)− L̂CFM(u
⋆) =

1

n

n∑
i=1

ℓ(xi;uθ)−
1

n

n∑
i=1

ℓ(xi;u
⋆).
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Remark L.2. Notice that R(u⋆) = 0 since u⋆ is the ground truth velocity field. Furthermore,
the fact that the gradients of the flow matching loss (risk) and the conditional flow matching loss
coincide implies that R(uθ) = R(uθ)−R(u⋆) = LCFM(uθ)− LCFM(u

⋆).

Remark L.3. We use L̂′
CFM and R̂′ to denote the conditional flow matching loss and empirical

risk with training samples {x′i}ni=1. Then for any velocity estimator uθ, the i.i.d. assumption
implies that E{x′

i}ni=1
[L̂′

CFM(uθ)] = LCFM(uθ), which leads to E{x′
i}ni=1

[R̂′(uθ)] = R(uθ).

Next, we introduce the truncated version of (i) loss function ℓ(x;uθ), (ii) conditional flow match-
ing loss LCFM(uθ), (iii) the conditional flow matching risk, R(uθ) (iv) the empirical risk R̂(uθ).

Definition L.3 (Domain Truncation of Loss and Risk). Given ℓ(x;uθ), LCFM(uθ), R(uθ) and
R̂(uθ), we define their truncated counterparts on a bounded domain D := [−D,D]dx by

ℓtrunc(x;uθ) := ℓ(x;uθ)1{∥x∥∞ ≤ D}, Ltrunc
CFM(uθ) := L(uθ)1{∥x∥∞ ≤ D},

Rtrunc(uθ) := R(x;uθ)1{∥x∥∞ ≤ D}, R̂trunc(uθ) := R̂(uθ)1{∥x∥∞ ≤ D},

where D > 0 is a constant.

With Definition L.3, we refer to ℓtrunc(x;uθ), Ltrunc
CFM(uθ), Rtrunc(uθ) and R̂trunc(uθ) as truncated

loss, truncated CFM loss, truncated risk and truncated empirical risk respectively.

L.2 Auxiliary lemmas
Since the target distribution q(x1) is unknown, direct computation of the risk is infeasible. There-
fore, we first decompose the estimation error into four components and present supporting lemmas
to bound each of them. Then, we incorporate these results in the main proof in Section L.3.

Estimation Error Decomposition. Let ûθ be the optimizer of the empirical conditional
flow matching loss L̂CFM(uθ) using i.i.d samples {xi}ni=1. Next, we introduce a different set
of i.i.d samples {x′i}ni=1 independent of the training sample {xi}ni=1. Then, we decompose
E{xi}ni=1

[R(ûθ)]:

E
{xi}ni=1

[R(ûθ)] = E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′(ûθ)− R̂′ trunc(ûθ)

]]
︸ ︷︷ ︸

(I)

+ E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′ trunc(ûθ)− R̂trunc(ûθ)

]]
︸ ︷︷ ︸

(II)

+ E
{xi}ni=1

[
R̂trunc(ûθ)− R̂(ûθ)

]
︸ ︷︷ ︸

(III)

+ E
{xi}ni=1

[
R̂(ûθ)

]
︸ ︷︷ ︸

(IV)

. (L.2)
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We refer to terms (I) and (III) as truncation error, and we control these errors by leveraging the
sub-Gaussian assumption in Lemma L.1. Then, we derive the generalization bound to control term
(II) using covering number in Lemma L.2 and Lemma L.3. Finally, we apply the approximation
error using transformers to bound term (IV) in Lemma L.5.

Truncation Error. We apply the sub-Gaussian assumption to bound the truncation error.

Lemma L.1 (Upper Bound on the Truncation Error). Assume Assumption I.1. Let t0, T ∈
(0, 1). Then, for any t ∈ [t0, T ] and velocity approximators uθ(x, t) in Theorem I.1 and Theo-
rem I.2, it holds

E
x
[
∣∣ℓ(x;uθ)− ℓtrunc(x;uθ)

∣∣] ≲ Ddx exp

(
−1

2
C2D

2

)
logN.

Proof. Our proof builds on Section D.2 of [Fu et al., 2024].

By Theorem I.1 and Theorem I.2, the transformers output bound CT = O(
√
logN).

Then, for all approximator uθ ∈ T h,s,r
R , it holds

E
x
[
∣∣ℓ(x;uθ)− ℓtrunc(x;uθ)

∣∣]
= E

x
[|ℓ(x;uθ)1[∥x∥ ≥ D]|] (

By Definition L.3
)

=
1

T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[∥uθ − (µ̇tx+ σ̇tx0)∥22]q(x)dxdt
(
By Definition L.1

)
≤ 2

T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[∥uθ∥22 + ∥µ̇tx+ σ̇tx0∥22]q(x)dxdt
(
By expanding the ℓ2-norm

)
≲

2

T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[∥uθ∥22 + ∥µ̇tx+ σ̇tx0∥22] exp
(
−1

2
C2∥x∥22

)
dxdt(

By Assumption I.1
)

≲
2

T − t0

∫ T

t0

∫
∥x∥≥D

E
x0∼N(0,I)

[logN + ∥µ̇tx+ σ̇tx0∥22] exp
(
−1

2
C2∥x∥22

)
dxdt(

By CT = O(
√
logN)

)
≲

1

T − t0

∫ T

t0

∫
∥x∥≥D

(logN + σ̇2
t d+ µ̇2

t∥x∥22) exp
(
−1

2
C2∥x∥22

)
dxdt

(
By x0 ∼ N(0, I)

)
≲
Ddx−2 exp

(
−1

2
C2D

2
)

T − t0

∫ T

t0

(logN + σ̇2
t d)dt+

Ddx exp
(
−1

2
C2D

2
)

T − t0

∫ T

t0

µ̇2
tdt

(
By Lemma D.2

)
≲ Ddx exp

(
−1

2
C2D

2

)
logN.

(
By Assumption I.2

)
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Covering Number of Loss Function Class with Transformer Estimator. Recall (II) in (L.2):

(II) = E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′ trunc(ûθ)− R̂trunc(ûθ)

]]
.

To derive an upper bound on (II), we introduce (i) the covering number technique in Lemma L.2
and Lemma L.3 (ii) the generalization error bound to bound in Lemma L.5.

We begin with the definition of covering number.

Definition L.4 (Covering Number). For data distribution P , let {xi}ni=1 be the data points sam-
pled from P . Denote P n := P ⊗ P · · ·P as the joint distribution that {xi}ni=1 ∼ P n. Given
a function class F and ϵc > 0, the ϵc-covering number N (ϵ,F , {xi}ni=1, ∥·∥) with norm ∥·∥ is
the smallest size of a collection {fj}Ni=1 ⊂ F such that for any f ∈ F , there exists a j ∈ [N ]
satisfying

max
i

∥f(xi)− fj(xi)∥ ≤ ϵ.

Further, we define the covering number with respect to the data distribution P and size n as

N (ϵ,F , P n, ∥·∥) := sup
{xi}ni=1∼Pn

N (ϵ,F , {xi}ni=1, ∥·∥).

Then we provides an upper bound of the covering number for transformer networks.

Lemma L.2 (Covering Number Bounds for Transformer, Lemma K.2 of [Hu et al., 2025b], Theo-
rem A.17 of [Edelman et al., 2022]). Let T h,s,r

R (CT , C
2,∞
KQ , CKQ, C

2,∞
OV , COV , CE, C

2,∞
F , CF , LT )

be the class of functions of one transformer block satisfying the norm bound for matrix and Lips-
chitz property for feed-forward layers. Then for all data point ∥x∥2,∞ ≤ D we have

logN (ϵc, T h,s,r
R , P n, ∥·∥2)

≤ log(nLT )

ϵ2c
α2
(
d

2
3 (C2,∞

F )
4
3 + d

2
3

(
2(CF )

2COVC
2,∞
KQ

) 2
3 + 2

(
(CF )

2C2,∞
OV

) 2
3

)3
,

where α := C2
FCOV (1 + 4CKQ)(D + CE).

Equipped with Lemma L.2, we now derive the the covering number bounds of loss function class
under transformer weights configuration in Theorem I.1 and Theorem I.2.
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Lemma L.3 (Covering Number Bounds for S(D)). Let ϵc > 0. We define the loss function
class by S(D) := {ℓ(x;uθ) : D → R|uθ ∈ T h,s,r

R }. Further, we define the norm of loss functions
by ∥ℓ(x;uθ)∥∞D := maxx∈[−D,D]dx |ℓ(x;uθ)|. Then, under transformer parameter configuration
in Theorem I.1 and Theorem I.2, the ϵc-covering number of S(D) with respect to ∥·∥∞D satisfies:

logN (ϵc,S(D), ∥ · ∥∞D) ≤ O
( log (nLT )

ϵ2c
D4N16βd+12β(logN)20dx+4β+17

)
.

Further, the ϵc-covering number of transformer network class satisfies:

logN (ϵc, T h,s,r
R , ∥·∥2) ≤ O

( log (nLT )

ϵ2c
D2N16βd+12β(logN)20dx+4β+16

)
.

Proof. First, we apply transformers parameter bounds in Theorem I.1 and Theorem I.2. Then, we
extend the covering number bound to loss function calss S(D).

• Log-Covering Number of Transformers Network Class. From Theorem I.1, we have

CKQ, C
2,∞
KQ = O

(
N4βd+2β(logN)4dx+2

)
;COV , C

2,∞
OV = O

(
N−β

)
;

CF , C
2,∞
F = O

(
Nβ(logN)

dx+β
2

+1
)
; CE = O(1); CT = O(

√
logN).

By Lemma L.2, the bounds on log-covering number follow

logN (ϵc, T h,s,r
R , ∥·∥2)

≤ α2 log(nLT )

ϵ2c

(
d

2
3 (C2,∞

F )
4
3 + d

2
3

(
2(CF )

2COVC
2,∞
KQ

) 2
3 + 2

(
(CF )

2C2,∞
OV

) 2
3

)3
≲
α2 log(nLT )

ϵ2c

(
(CF )

2COVC
2,∞
KQ

)2
,

(
By dropping lower order terms

)
where

(CF )
2COVC

2,∞
KQ

= O(N4β(logN)2dx+2β+4︸ ︷︷ ︸
(CF )4

N−2β︸ ︷︷ ︸
(COV )2

N8βd+4β(logN)8dx+4︸ ︷︷ ︸
(C2,∞

KQ )2

)

= O(N8βd+6β(logN)10dx+2β+8).

Therefore,

logN (ϵc, T h,s,r
R , ∥·∥2) ≲

α2 log(nLT )

ϵ2c
(N8βd+6β(logN)10dx+2β+8).

By Lemma L.2, we have

α := (CF )
2COV (1 + 4CKQ)(D + CE)
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≲ N2β(logN)dx+β+2︸ ︷︷ ︸
(CF )2

N−β︸︷︷︸
(COV )

N4βd+2β(logN)4dx+2︸ ︷︷ ︸
(CKQ)

(D + CE)
(
By the definition of α

)
= O(DN4βd+3β(logN)5dx+β+4).

Altogether, we have

logN (ϵc, T h,s,r
R , ∥·∥2) ≲

log (nLT )

ϵ2c
D2N16βd+12β(logN)20dx+4β+16.

Further, by ∥ · ∥∞ ≤ ∥ · ∥2, we have

logN (ϵc, T h,s,r
R , ∥ · ∥∞) ≲

log(nLT )

ϵ2c
D2N16βd+12β(logN)20dx+4β+16. (L.3)

• Log-Covering Number of Loss Function Class. Recall the definition of loss func-
tion class Definition L.1 and its truncated counterpart Definition L.3. Let δ > 0 and
u1(x, t), u2(x, t) ∈ T h,r,s

R be two velocity approximators satisfying ∥u1 − u2∥∞ ≤ δ on
domain x ∈ [−D,D]dx .
First, we derive the upper bound on the expectation of ∥ut(x|x1)∥:

E
X0∼N(0,I)

[∥ut(x|x1)∥2] (L.4)

= E
X0∼N(0,I)

[∥µ̇tx+ σ̇tX0∥]
(
By Definition L.1

)
≤
√

E
X0∼N(0,I)

[∥µ̇tx+ σ̇tX0∥22]
(
By Jensen’s inequality

)
≤
√

E
X0∼N(0,I)

[µ̇2
t∥x∥22 + σ̇2

t ∥X0∥22]
(
By expanding the ℓ2 norm

)
=
√

E
X0∼N(0,I)

[µ̇2
t∥x∥22] + σ̇2

t

(
By X0 ∼ N(0, I)

)
≤
√
µ̇2
tD

2 + σ̇2
t .

(
By x ∈ [−D,D]dx

)
Then, the distance between loss function ℓ1(x;u1) and ℓ2(x;u2) follows:

|ℓ1(x;u1)− ℓ2(x;u2)| (L.5)

=
1

T − t0

∣∣∣∣∫ T

t0

E
X0∼N(0,I)

[∥u1(x, t)− ut(x|x1)∥22 − ∥u2(x, t)− ut(x|x1)∥22]dt
∣∣∣∣(

By Definition L.1
)

=
1

T − t0

∣∣∣∣∫ T

t0

E
X0∼N(0,I)

[(u1(x, t) + u2(x, t)− 2ut(x|x1))⊤(u1(x, t)− u2(x, t))]dt

∣∣∣∣
≤ δ

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥u1(x, t) + u2(x, t)− 2ut(x|x1)∥]dt
(
By ∥u1 − u2∥ ≤ δ

)
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≤ δ

T − t0

∫ T

t0

√
E

X0∼N(0,I)
[∥u1(x, t) + u2(x, t)− 2ut(x|x1)∥22]dt

(
By Jensen’s inequality

)
≤ δ

T − t0

∫ T

t0

√
2 E
X0∼N(0,I)

[∥u1(x, t) + u2(x, t)∥22 + 2∥ut(x|x1)∥22]dt(
By expanding the ℓ2 norm

)
≲

δ

T − t0

∫ T

t0

√
E

X0∼N(0,I)
[logN + 2∥ut(x|x1)∥22]dt

(
By CT = O(

√
logN)

)
≲

δ

T − t0

∫ T

t0

√
logN + µ̇2

tD
2 + 4σ̇2

t dt
(
By (L.4)

)
≲ δ
√
logN +D2.

(
By Assumption I.2

)
Finally, we extend the log covering number to the loss function class S(D) by setting

ϵ′c := Ω
(
ϵc
√

logN +D2
)
.

This gives

logN (ϵ′c,S(D), ∥·∥∞D) ≤ logN (ϵc, T h,s,r
R , ∥ · ∥∞).

(
By (L.5)

)
Therefore,

logN (ϵ′c,S(D), ∥·∥∞D)

≤ logN (ϵc, T h,s,r
R , ∥ · ∥∞)

≲
log (nLT )

ϵ2c
·D2N16βd+12β(logN)20dx+4β+16 (

By (L.3)
)

= O
( log (nLT )

(ϵ′c)
2

D4N16βd+12β(logN)20dx+4β+17
)
.

(
By the definition of ϵ′c

)
This completes the proof.

Generalization Bound. Based on covering number bounds results in Lemma L.3, we analyze the
upper bound of generalization error

∣∣∣E{xi}ni=1
[Rtrunc(ûθ)− R̂trunc(ûθ)]

∣∣∣.
However, one key distinction separates the generalization bound of the flow matching loss from
results in classical learning theory. Its empirical Definition L.2 takes the shape ℓ(x;uθ)− ℓ(x;u⋆),
where u⋆ denotes the ground truth velocity. Unlike typical loss functions, which remain nonnega-
tive almost everywhere, the flow model loss does not follow this property. To handle this, the next
lemma controls the second moment of the flow matching loss using its first moment. This result
plays a central role in applying a concentration inequality to derive the generalization bound.
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Lemma L.4 (Bounds on Second Moment of Flow Matching Loss, Modified from Lemma C.1 of
[Yakovlev and Puchkin, 2025] ). Assume Assumption I.1 and Assumption I.3. Then, it holds

E
x∼q

[∣∣ℓtrunc(x;uθ)− ℓtrunc(x;u⋆)
∣∣2] ≲ κ · E

x∼q

[
ℓtrunc(x;uθ)− ℓtrunc(x;u⋆)

]
,

where κ := D2 +
√
logN .

Proof. Recall Definition L.1 and Definition L.2. We have

ℓtrunc(x;uθ) := ℓ(x;uθ)1{∥x∥∞ ≤ D} and R̂(uθ) =
1

n

n∑
i=1

ℓ(xi;uθ)−
1

n

n∑
i=1

ℓ(xi;u
⋆),

where u⋆(x, t) = 1
pt(x)

·
∫
Rdx ut(x|x1)pt(x|x1)q(x1) dx1 is the ground truth velocity and

ℓ(x;uθ) :=
1

T − t0

∫ T

t0

E
X0∼N(0,I)

[∥uθ(µtx+ σtX0, t)− (µ̇tx+ σ̇tX0)∥22]dt.

For any xi, the flow matching loss takes the form ℓ(xi;uθ) − ℓ(xi;u
⋆). To simplify notation, we

omit the indicator 1{∥x∥∞ ≤ D} when expanding ℓtrunc, with the understanding that we focus
only on the bounded domain where the flow matching loss is defined. Then, we compute∣∣ℓtrunc(x;uθ)− ℓtrunc(x;u⋆)

∣∣
=

∣∣∣∣∫ T

t0

1

T − t0
E

X0∼N(0,I)

[
∥uθ − (µ̇tx+ σ̇tX0)∥22 − ∥u⋆ − (µ̇tx+ σ̇tX0)∥22

]
dt

∣∣∣∣
=

∣∣∣∣∫ T

t0

1

T − t0
E

X0∼N(0,I)

[
(uθ − u⋆)⊤

(
uθ + u⋆ − 2 · (µ̇tx+ σ̇tX0)

)]
dt

∣∣∣∣
≤
(∫ T

t0

1

T − t0
E
[
∥uθ − u⋆∥22

]
dt
) 1

2 ·
(∫ T

t0

1

T − t0
E
[
∥uθ + u⋆ − 2 · (µ̇tx+ σ̇tX0)∥22︸ ︷︷ ︸

(A)

]) 1
2
,

(L.6)

where we apply the Cauchy-Schwarz inequality for the last inequality. Next, we bound (A) using
previous results for the bounds on the true velocity, conditional velocity and transformer network.

Recall Lemma J.4. It holds

∥u⋆∥∞ ≤ |µ̇t|
µt

· ∥x∥∞ + C5

∣∣∣∣ µ̇t

µt

− σ̇t
σt

∣∣∣∣ · (∥x∥2 + 1),

and by Assumption I.3 we have ∥u⋆∥2∞ ≲ ∥x∥22 and here we consider bounded domain ∥x∥∞ ≤ D.

Further, under the transformer network configuration in either Theorem I.1 or Theorem I.2, we
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have the transformer output bounds CT = O(
√
logN). Lastly, for µ̇tx+ σ̇tX0, it holds:

E
X0∼N(0,I)

[
∥µ̇tx+ σ̇tX0∥22

]
≤ E

X0∼N(0,I)

[
∥µ̇tx∥22 + ∥σ̇tX0∥22

]
≲ D2,

where we invoke Assumption I.3 and ∥x∥22 ≤ dxD
2 in the last inequality.

Altogether, we have

(A) ≤
∫ T

t0

1

T − t0
E
[
∥uθ∥22 + ∥u⋆∥22 + ∥2 · (µ̇tx+ σ̇tX0)∥22 ≲ D2 +

√
logN.

Therefore, (L.6) becomes:

∣∣ℓtrunc(x;uθ)− ℓtrunc(x;u⋆)
∣∣2 ≲ (∫ T

t0

1

T − t0
E
[
∥uθ − u⋆∥22

]
dt
)
·
(
D2 +

√
logN

)
.

Then, we conclude that

E
x∼q

[∣∣ℓtrunc(x;uθ)− ℓtrunc(x;u⋆)
∣∣2]

≲
(
D2 +

√
logN

)
·
∫ T

t0

1

T − t0
E
x∼q

[
E

X0∼N(0,I)

[
∥uθ − u⋆∥22

]
dt
]

=
(
D2 +

√
logN

)
·
∫ T

t0

1

T − t0
E

xt∼pt

[
∥uθ − u⋆∥22dt

]
︸ ︷︷ ︸

(B)

(
By tower property

)

=
(
D2 +

√
logN

)
· E
x∼q

[
ℓtrunc(x;uθ)− ℓtrunc(x;u⋆)

]
.

(
By Remark L.2

)
We remark that (B) is the conditional flow matching risk R(uθ) defined in (L.1).

This completes the proof.

Lemma L.5 (Generalization Bound, Modified from the Theorem C.4 of [Oko et al., 2023]). Let
ûθ be the velocity estimator trained by optimizing LCFM(uθ) following Definition L.1 with i.i.d
training samples {xi}ni=1. For ϵc > 0, let N := N (ϵc,S(D), qn, ∥·∥∞) be the covering number of
function class of loss S(D) following Lemma L.3. Then we bound the generalization error:

E
{xi}ni=1

[
Rtrunc(ûθ)− R̂trunc(ûθ)

]
≲ E

{xi}ni=1

[R̂trunc(ûθ)] +O(
1

n
logN + ϵc).

Proof. We use L̂′
CFM and R̂′ to denote the conditional flow matching loss and empirical risk with

ghost training samples {x′i}ni=1. Further, let u⋆ denote the ground truth velocity field.
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Then, following Remark L.3, we rewrite the generalization error:∣∣∣∣ E
{xi}ni=1

[Rtrunc(ûθ)− R̂trunc(ûθ)]

∣∣∣∣ (L.7)

=

∣∣∣∣ E
{xi}ni=1

[ E
{x′

i}ni=1

[R̂′trunc(ûθ)]− R̂trunc(ûθ)]

∣∣∣∣ (
By Remark L.3

)
=

∣∣∣∣ E
{xi,x′

i}ni=1

[R̂′trunc(ûθ)− R̂trunc(ûθ)]

∣∣∣∣ (
By the independence between x′

i and R̂(ûθ)
)

=

∣∣∣∣∣ 1n E
{xi,x′

i}ni=1

[(
n∑

i=1

ℓtrunc(x′i; ûθ)−
n∑

i=1

ℓtrunc(x′i;u
⋆))− (

n∑
i=1

ℓtrunc(xi; ûθ)−
n∑

i=1

ℓtrunc(xi;u
⋆))]

∣∣∣∣∣.(
By Definition L.2

)
For ϵc > 0 to be chosen later, let J := {ℓ1, ℓ2, . . . , ℓN} be a ϵc-covering of the loss function
class S(D) with the minimum cardinality in the L∞ metric. Note that ℓ1, . . . , ℓN have domain
D = [−D,D]dx by Definition L.3 and Definition L.4. Further, let J be the random variable such
that ∥ℓ(·, ûθ)− ℓJ(·, uJ)∥∞ ≤ ϵc. Moreover, we introduce following definitions for simplicity:

ω(x) := ℓtrunc(x; ûθ)− ℓtrunc(x;u⋆),

ωj(x) := ℓj(x;uj)− ℓtrunc(x;u⋆),

hj := max{A,
√

E
z
[ℓj(z;uj)− ℓtrunc(z;u⋆)]},

Ω := max
1≤j≤N

∣∣∣∣∣
n∑

i=1

ωj(x
′
i)− ωj(xi)

hj

∣∣∣∣∣,
where z ∼ q is independent of {xi, x′i}ni=1. Then we can further bound (L.7) as follows:∣∣∣∣∣ 1n E

{xi,x′
i}ni=1

[(
n∑

i=1

ℓtrunc(x′i; ûθ)−
n∑

i=1

ℓtrunc(x′i;u
⋆))− (

n∑
i=1

ℓtrunc(xi; ûθ)−
n∑

i=1

ℓtrunc(xi;u
⋆))]

∣∣∣∣∣
(L.8)

≤

∣∣∣∣∣ 1n E
{xi,x′

i}ni=1

[(
n∑

i=1

(ωJ(x
′
i)− ωJ(xi))]

∣∣∣∣∣+ 2ϵc
(
By the definitions of ωJ and covering number

)

≤ 1

n
E

{xi,x′
i}ni=1

[

∣∣∣∣∣(
n∑

i=1

(ωJ(x
′
i)− ωJ(xi))

∣∣∣∣∣] + 2ϵc
(
By the property of expectation

)
≤ 1

n
E

{xi,x′
i}ni=1

[hJΩ] + 2ϵc
(
By the definitions of hj and Ω

)
≤ 1

n

√
E

{xi,x′
i}ni=1

[h2J ] E
{xi,x′

i}ni=1

[Ω2] + 2ϵc
(
By Cauchy-Schwarz inequality

)
≤ 1

n
(
n

2
E

{xi,x′
i}ni=1

[h2J ] +
1

2n
E

{xi,x′
i}ni=1

[Ω2]) + 2ϵc
(
By AM-GM Inequality

)
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=
1

2
E

{xi,x′
i}ni=1

[h2J ] +
1

2n2
E

{xi,x′
i}ni=1

[Ω2] + 2ϵc.

Now we bound E{xi,x′
i}ni=1

[h2J ] and E{xi,x′
i}ni=1

[Ω2] separately. For E{xi,x′
i}ni=1

[h2j ], we have

E
{xi,x′

i}ni=1

[h2j ] ≤ A2 + E
{xi,x′

i}ni=1

[E
z
[ℓj(z;uJ)− ℓtrunc(z;u⋆)]]

(
By the definition of hj

)
≤ A2 + E

{xi,x′
i}ni=1

[E
z
[ℓtrunc(z; ûθ)− ℓtrunc(z;u⋆)]] + 2ϵc

(
By the definition of ϵc

)
≤ A2 + E

{xi}ni=1

[Rtrunc(ûθ)] + 2ϵc.
(
By Remark L.3

)
Then we start to bound E{xi,x′

i}ni=1
[Ω2]. By the definition of ωj(x) and the independence between

{xi}ni=1 and {x′i}ni=1, we have

E
xi,x′

i

[
ωj(xi)ωj(x

′
i)

h2j
]

=
1

h2j
E
xi

[ωj(xi)] · E
x′
i

[ωj(x
′
i)]

(
By the independence between hj and {xi, x

′
i}ni=1

)
=

1

h2j
(E
xi

[ωj(xi)])
2 (

By the independence between wj and {xi, x
′
i}ni=1

)
≥ 0. (L.9)

To use Bernstein’s Inequality, for any j, we bound the following expectation as

E
{xi,x′

i}ni=1

[
n∑

i=1

(
ωj(xi)− ωj(x

′
i)

hj
)2]

=
n∑

i=1

( E
xi,x′

i

[(
ωj(xi)

hj
)2 + (

ωj(x
′
i)

hj
)2]− 2 E

xi,x′
i

[
ωj(xi)ωj(x

′
i)

h2j
])

≤
n∑

i=1

E
xi,x′

i

[(
ωj(x)

hj
)2 + (

ωj(x
′)

hj
)2].

(
By (L.9)

)
Recall that for any j ∈ [N ], ωj(x) := ℓj(x;uj) − ℓtrunc(x;u⋆). For any ℓ ∈ S(D), assume
|ℓtrunc(·;uθ)| ≤ κ, then for any i ∈ [n], j ∈ [N ], we have Exi,x′

i
[ωj(xi)] = Exi,x′

i
[ωj(x

′
i)], which

leads to

E
xi,x′

i

[ωj(xi)] = E
xi,x′

i

[ωj(x
′
i)]

= E
xi,x′

i

[ℓj(x
′
i;uj)− ℓtrunc(x′i;u

⋆)]
(
By the definition of ωj(x)

)
= E

z
[ℓj(z;uj)− ℓtrunc(z;u⋆)]

≤ E
xi,x′

i

[h2j ].
(
By the definition of hj

)
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Then, it holds

E
{xi,x′

i}ni=1

[
n∑

i=1

(
ωj(xi)− ωj(x

′
i)

hj
)2]

≤
n∑

i=1

E
xi,x′

i

[(
ωj(xi)

hj
)2 + (

ωj(x
′
i)

hj
)2]

≤ 2κ
n∑

i=1

E
xi,x′

i

[(
ωj(xi)

h2j
) + (

ωj(x
′
i)

h2j
)]

(
By Lemma L.4

)
≤ 4nκ.

Since
∣∣∣ωj(xi)−ωj(x

′
i)

hj

∣∣∣ ≤ κ
A

and E{xi,x′
i}ni=1

[
ωj(xi)−ωj(x

′
i)

hj
] = 0, by Bernstein’s Inequality, we have for

any j ∈ [N ], h > 0,

Pr

[
(

n∑
i=1

ωj(xi)− ωj(x
′
i)

hj
)2 ≥ h

]
= 2Pr

[
n∑

i=1

ωj(xi)− ωj(x
′
i)

hj
≥

√
h

]

≤ 2 exp

(
− h/2

κ(4n+
√
h

3A
)

)
.

Thus, we have

Pr
[
Ω2 ≥ h

]
≤

N∑
j=1

Pr

[
(

n∑
i=1

ωj(xi)− ωj(x
′
i)

hj
)2 ≥ h

] (
By union bound.

)

≤ 2N exp

(
− h/2

κ(4n+
√
h

3A
)

)
.

Thus, for any h0 > 0, we bound E{xi,x′
i}ni=1

[Ω2] as

E
{xi,x′

i}ni=1

[Ω2]

=

∫ h0

0

Pr
[
Ω2 ≥ h

]
dh+

∫ ∞

h0

Pr
[
Ω2 ≥ h

]
dh

≤ h0 +

∫ ∞

h0

2N exp

(
− h/2

κ(4n+
√
h

3A
)

)
dh

(
By tail-sum formula

)

≤ h0 + 2N
∫ ∞

h0

[exp

(
− h

16κn

)
+ exp

(
−3A

√
h

4κ

)
]dh

≤ h0 + 2N [16κn exp

(
− h0
16κn

)
+ (

8κ
√
h0

3A
+

32κ

9A2
) exp

(
−3A

√
h0

4κ

)
].
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Taking A =
√
h0

12n
and h0 = 16κn logN , we have

E
{xi,x′

i}ni=1

[Ω2] ≲ nκ logN .

Combining above, we bound the generalization error as∣∣∣∣ E
{xi}ni=1

[Rtrunc(ûθ)− R̂trunc(ûθ)]

∣∣∣∣
≤ 1

2
E

{xi,x′
i}ni=1

[h2J ] +
1

2n2
E

{xi,x′
i}ni=1

[Ω2] + 2ϵc
(
By (L.7)

)
≤ 1

2
(A2 + E

{xi}ni=1

[Rtrunc(ûθ)] + 2ϵc) +
1

2n2
O(nκ logN )

≲
1

2
E

{xi}ni=1

[Rtrunc(ûθ)] +O(
κ

n
logN + ϵc).

This implies

E
{xi}ni=1

[
Rtrunc(ûθ)

]
≲ 2 · E

{xi}ni=1

[
R̂trunc(ûθ)

]
+O(

κ

n
logN + ϵc).

Therefore,

E
{xi}ni=1

[
Rtrunc(ûθ)− R̂trunc(ûθ)

]
≲ E

{xi}ni=1

[
R̂trunc(ûθ)

]
+O(

κ

n
logN + ϵc).

This completes the proof.

L.3 Main Proof of Theorem I.3
We now give the formal proof of Theorem I.3.

Theorem L.1 (Theorem I.3 Restated: Velocity Estimation with Transformer). Let d be the fea-
ture dimension. Suppose we choose the transformers as in Theorem I.1 and Theorem I.2 corre-
spondingly, then we have

• Assume Assumption I.1 and Assumption I.2. Then,

E
{xi}ni=1

[R(ûθ)] = O(n− 1
16d+15 (log n)20dx+4β+20).

• Assume Assumption I.2 and Assumption I.3. Then,

E
{xi}ni=1

[R(ûθ)] = O(n− 1
8d+9 (log n)20dx+4β+20).
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Proof of Theorem I.3. Let {x′i}ni=1 be a different set of i.i.d samples independent of the training
sample {xi}ni=1. Further, we use R̂′ to denote the empirical risk with samples {x′i}ni=1.

Then, following (L.2), we decompose E{xi}ni=1
[R(ûθ)] as:

E
{xi}ni=1

[R(ûθ)] = E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′(ûθ)− R̂′trunc(ûθ)

]]
︸ ︷︷ ︸

(I)

+ E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′trunc(ûθ)

]
− R̂trunc(ûθ)

]
︸ ︷︷ ︸

(II)

+ E
{xi}ni=1

[
R̂trunc(ûθ)− R̂(ûθ)

]
︸ ︷︷ ︸

(III)

+ E
{xi}ni=1

[
R̂(ûθ)

]
︸ ︷︷ ︸

(IV)

.

Then, we bound each term and incorporate them to obtain the upper bound on the estimation error.

• Bound (I) and (III). By Lemma L.1, term (I) and term (III) are upper bounded by

(I), (III) ≲ Ddx exp

(
−1

2
C2D

2

)
logN.

• Bound (II). By the generalization error bound (Lemma L.5), we have

(II) = E
{xi}ni=1

[
E

{x′
i}ni=1

[
R̂′ trunc(ûθ)

]
− R̂trunc(ûθ)

]
(L.10)

= E
{xi}ni=1

[Rtrunc(ûθ)− R̂trunc(ûθ)]
(
By E{x′

i}n
i=1

[R̂′trunc] = Rtrunc
)

≲ E
{xi}ni=1

[Rtrunc(ûθ)] +O(
1

n
logN + ϵc)

(
By Lemma L.5

)
≲ (IV) +Ddx exp

(
−1

2
C2D

2

)
logN +O(

1

n
logN + ϵc).

(
By Lemma L.1

)
where N (ϵc,S(D), ∥·∥∞D) is the covering number (Definition L.4) of loss function class.

• Bound (IV). Recall that R̂(ûθ) := L̂CFM(ûθ) − L̂CFM(u
⋆) and ûθ is trained by optimizing

L̂CFM(uθ) following Definition L.2. Therefore, for any velocity estimator uθ, it holds

R̂(ûθ) ≤ L̂CFM(uθ)− L̂CFM(u
⋆) = R̂(uθ).

Then, for any velocity estimator uθ, it holds

E
{xi}ni=1

[R̂(ûθ)] ≤ E
{xi}ni=1

[R̂(uθ)] = R(uθ). (L.11)
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Altogether, the estimation error is upper bounded by

E
{xi}ni=1

[R(ûθ)] (L.12)

= (I) + (II) + (III) + (IV)

≲ Ddx exp
(
−C2D

2
)
logN +O(

1

n
logN + ϵc) + 2(IV)

≤ O(N−2β(logN)dx/2+1) +O(
1

n
logN + ϵc) + 2(IV).

(
By setting D :=

√
2β logN/C2

)

Furthermore, the log covering number is upper bounded by

logN (ϵc,S(D), ∥ · ∥∞D) (L.13)

≤ O
( log(nLT )

ϵ2c
D4N16βd+12β(logN)20dx+4β+17

) (
By Lemma L.3

)
≤ O

( log(nLT )

ϵ2c
N16βd+12β(logN)20dx+4β+19

)
.

(
By D :=

√
2β logN/C2

)

Next, we bound the velocity field estimation error.

• Estimation Rates under Generic Hölder Smoothness. By Theorem I.1, it holds

(IV) ≤ R(uθ(x, t))
(
By (L.11)

)
=

∫
1

T − t0

∫
Rdx

∥ut(x)− uθ(x, t)∥22pt(x)dxdt

= O(B2N−β · (logN)dx+
β
2
+1).

(
By Theorem I.1

)
Then, (L.12) becomes

E
{xi}ni=1

[R(ûθ)]

≤ O(N−2β(logN)dx/2+1) +O
( 1
n
logN + ϵc

)
+O(B2N−β(logN)dx+

β
2
+1)

≤ O(N−2β(logN)dx/2+1) +O(
log (nLT )

nϵ2c
N ν(logN)20dx+4β+19 + ϵc) +O(B2N−β(logN)dx+

β
2
+1),(

By (L.13)
)

where ν := 16βd+ 12β.
Let γ1, γ2 ∈ (0, 1) be two arbitrary numbers. We take N = nγ1/ν and ϵc = n−γ2 . Then,

E
{xi}ni=1

[R(ûθ)]

≤ O(n− 2βγ1
ν (log n)

dx
2
+1) +O(n−1+γ1+2γ2(logN)20dx+4β+20LT + n−γ2) +O(B2n−βγ1

ν (log n)dx+
β
2
+1)

≤ O(n−min{βγ1
ν

,1−γ1−2γ2,γ2}(log n)20dx+4β+20).
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For any γ1, γ2 ∈ (0, 1) satisfying

γ1 + 2γ2 < 1,

we consider

min{βγ1
ν
, 1− γ1 − 2γ2, γ2}.

To simplify, we set

βγ1
ν

= 1− γ1 − 2γ2 = γ2,

giving

γ1 =
ν

ν + 3β
, γ2 =

β

ν + 3β
.

Therefore,

E
{xi}ni=1

[R(ûθ)] = O(n− 1
16d+15 (log n)20dx+4β+20).

• Estimation Rates under Stronger Hölder Smoothness. By Theorem I.2, it holds

(IV) ≤ R(uθ(x, t))
(
By (L.11)

)
=

∫ ∫
∥ut(x)− uθ(x, t)∥22 · pt(x)dxdt

= O(B2N−2β(logN)dx+β).

Then, (L.12) becomes

E
{xi}ni=1

[R(ûθ)]

≤ O(N−2β(logN)
dx
2
+1) +O(

1

n
logN + ϵc) +O(B2N−2β(logN)dx+β)

≤ O(N−2β(logN)
dx
2
+1) +O(

log n

nϵ2c
N ν(logN)20dx+4β+19 + ϵc) +O(B2N−2β(logN)dx+β),(

By (L.13)
)

where ν := 16βd+ 12β.
Let γ3, γ4 ∈ (0, 1) be two arbitrary numbers. We take N = nγ3/ν and ϵc = n−γ4 . Then,

E
{xi}ni=1

[R(ûθ)]

≤ O(n− 2βγ3
ν (log n)

dx
2
+1) +O(n−1n2γ4nγ3(log n)20dx+4β+20 + n−γ4) +O(B2n− 2βγ3

ν (log n)dx+β)
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≤ O(n−min{ 2βγ3
ν

,1−γ3−2γ4,γ4}(log n)20dx+4β+20).

For any γ3, γ4 ∈ (0, 1) satisfying

γ3 + 2γ4 < 1,

we consider

min{2βγ3
ν

, 1− γ3 − 2γ4, γ4}.

To simplify, we set

2βγ3
ν

= 1− γ3 − 2γ4 = γ4,

giving

γ3 =
ν

ν + 6β
, γ4 =

2β

ν + 6β
.

Therefore,

E
{xi}ni=1

[R(ûθ)] = O(n− 1
8d+9 (log n)20dx+4β+20).

This completes the proof.
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M Proof of Theorem I.4
In this section, we apply the Grönwall’s inequality and the Alekseev–Gröbner lemma to extend
the velocity estimation to distribution estimation under 2-Wasserstein distance.

Organizations. Section M.1 introduces auxiliary lemmas. Section M.2 presents the main proof.

M.1 Auxiliary Lemmas
In this section, we introduce auxiliary lemmas for extending the velocity estimation to distri-
bution estimation in 2-Wasserstein distance. Specifically, we state the Grönwall’s inequality in
Lemma M.1. Furthermore, we introduce the Alekseev–Gröbner lemma that quantifies the devia-
tion between solutions of two distinct ODEs in terms of the discrepancy between their velocity in
Lemma M.2.

We begin with the Grönwall’s inequality.

Lemma M.1 (Grönwall’s Inequality, [Gronwall, 1919]). Let a, b ∈ R with a < b. Let g(t) and
y(t) be two real-valued continuous functions defined on [a, b]. Then, if y(t) is differentiable on
[a, b] and satisfies:

d

dt
y(t) ≤ y(t)g(t), t ∈ [a, b],

it holds

y(t) ≤ y(a) exp

(∫ b

a

g(s)ds

)
.

Next, we introduce the Alekseev-Gröbner lemma.
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Lemma M.2 (Alekseev-Gröbner Lemma, Lemma 16 of [Fukumizu et al., 2024], Proposition 2 of
[Benton et al., 2023], Theorem 14.5 of [Hairer et al., 1993]). Let u(x, t) and uθ(x, t) be smooth
vector fields and ψ(x, s, t) and ψθ(x, s, t) be the respective flows defined for t ≥ s that satisfy

d

dt
ψ(x, s, t) = u(ψ(x, s, t), t), ψ(x, s, s) = x

d

dt
ψθ(x, s, t) = uθ(ψθ(x, s, t), t), ψθ(x, s, s) = x.

Then,

ψθ(x, t0, T )− ψ(x, t0, T ) =

∫ T

t0

Dψθ(ψ(x, t0, s), s, T )(uθ(ψ(x, t0, s), s)− u(ψ(x, t0, s), s))ds,

where the partial derivatives in the Jacobian matrix Dψθ(ψ(x, t0, s), s, T ) is with respect to its
first argument.

M.2 Main Proof of Theorem I.4
We now present the main proof of Theorem I.4.

Theorem M.1 (Theorem I.4 Restated: Distribution Estimation under Wasserstein Distance). Let
P̂T denote the estimated distribution at time T . Further, we define a constant ν := 16(L+1)+12/d.

• Assume Assumption I.1 and Assumption I.2. It holds

E
{xi}ni=1

[W2(P̂T , PT )] = O(n− 1
32d+30 (log n)10dx+2β+10).

• Assume Assumption I.2 and Assumption I.3. It holds

E
{xi}ni=1

[W2(P̂T , PT )] = O(n− 1
16d+18 (log n)10dx+2β+10).

Proof of Theorem I.4. We bound the 2-Wasserstein distance between the estimated and true dis-
tributions with the ℓ2 difference of the velocity field network and the true velocity field. Our proof
structure follows [Fukumizu et al., 2024, Theorem 3] and [Benton et al., 2023, Theorem 1].

The distributions P̂T and PT are the pushforwards of Pt0 by ψθ(·, t0, T ) and ψ(·, t0, T ). Thus,
using the definition of the 2-Wasserstein metric, it follows that

W2(P̂T , PT ) ≤
√

E
x∼pt0

[∥ψθ(x, t0, T )− ψ(x, t0, T )∥22].

We use Lemma M.2 to bound the ℓ2 difference of the flows. To that end, let us first bound the
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Jacobian matrix Dψθ(ψ(x, t0, s), s, t). We have

∂

∂t
∥Dψθ(ψ(x, t0, s), s, t)∥2

≤ ∥ ∂
∂t
Dψθ(ψ(x, t0, s), s, t)∥2

= ∥Duθ(ψθ(ψ(x, t0, s), t), s, t)Dψθ(ψ(x, t0, s), s, t)∥2
≤ LT ∥Dψθ(ψ(x, t0, s), s, t)∥2,

where the first inequality follows from triangle inequality of the ∥ · ∥2-norm, and the second
equality follows from the flow ODE in the assumption of Lemma M.2, and the third inequality
follows from the Lipschitzness of transformer network (Definition B.2). Therefore,

∥Dψθ(ψ(x, t0, s), s, t)∥2 ≲ exp

{∫ t

s

LT du

}
≤ exp

{∫ 1

0

LT du

}
=:M.

(
By Lemma M.1

)

Now we have

∥ψθ(x, t0, T )− ψ(x, t0, T )∥22

≤M2 · (
∫ T

t0

∥uθ(ψ(x, t0, s), s)− u(ψ(x, t0, s), s)∥2ds)2

≤M2

∫ T

t0

∥uθ(ψ(x, t0, s), s)− u(ψ(x, t0, s), s)∥22ds,

where in the first line we apply Lemma M.2 and in the second line we apply the Hölder’s inequal-
ity. Then, we take expectation with respect to x ∼ pt0 on both sides of the above inequality

E
x∼pt0

[∥ψθ(x, t0, T )− ψ(x, t0, T )∥22] ≤M2 E
x∼pt0

[

∫ T

t0

∥uθ(ψ(x, t0, s), s)− u(ψ(x, t0, s), s)∥22ds]

=M2

∫ T

t0

E
x∼ps

[∥uθ(x, s)− u(x, s)∥22]ds,

where the last equality follows since the samples ψ(x, t0, s) with x ∼ pt0 are the same as the
samples x ∼ ps by construction of the flow.

Therefore, we have

W2(P̂T , PT ) ≤M · (
∫ T

t0

E
x∼ps

[∥uθ(x, s)− u(x, s)∥22]ds)
1
2 ,

where ∫ T

t0

E
x∼ps

[∥uθ(x, s)− u(x, s)∥22]ds = (T − t0)R(uθ).
(
By Definition I.2

)
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Then, by Assumption I.2, we have

E
{xi}ni=1

[W2(P̂T , PT )] ≤M · (T − t0) E
{xi}ni=1

[
√

R(ûθ)] ≲M E
{xi}ni=1

[
√
R(ûθ)].

Finally, we apply the flow estimation results in Theorem I.3 and get

E
{xi}ni=1

[R(ûθ)] = O(n− 1
16d+15 (log n)20dx+4β+20),

E
{xi}ni=1

[R(ûθ)] = O(n− 1
8d+9 (log n)20dx+4β+20),

under Assumption I.1 and Assumption I.3 respectively. These imply

E
{xi}ni=1

[W2(P̂T , PT )] ≲M E
{xi}ni=1

[
√
R(ûθ)] = O(n− 1

32d+30 (log n)10dx+2β+10),

E
{xi}ni=1

[W2(P̂T , PT )] ≲M E
{xi}ni=1

[
√
R(ûθ)] = O(n− 1

16d+18 (log n)10dx+2β+10).

This completes the proof.
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N Proof of Theorem I.5
In this section, we prove the nearly minimax optimality results of flow matching transformers
under specified settings (Theorem I.5).

We begin with the definition of modulus of smoothness following [Oko et al., 2023].

Definition N.1 (Modulus of Smoothness). Let Ω be a domain in Rdx and f ∈ Lp′(Ω) be a
function for some p′ ∈ (0,∞]. We define the r-th modulus of smoothness of f by:

ωr,p′(f, t) := sup
∥h∥2≤t

∥∆r
h(f)∥p′ ,

where ∆r
h(Ω) is the difference operator defined by

∆r
h(f)(x) :=


r∑

j=0

(
r

j

)
(−1)r−jf(x+ jh), if x+ jh ∈ Ω for all j,

0, otherwise.

Next, we define the Besov space.

Definition N.2 (Besov Space Bs
p′,q′). Let 0 < p′, q′ ≤ ∞, s > 0 and r := ⌊s⌋ + 1. The Besov

norm of a function f ∈ Lp′(Ω) is defined by ∥f∥Bs
p′,q′

:= ∥f∥p′ + |f |Bs
p′,q′

, where

|f |Bs
p′,q′

:=


∫ ∞

0

((
t−sωr,p′(f, t)

)q′ dt
t

) 1
q′
, q′ <∞,

0, q′ = ∞.

Given m,L > 0 we have the Besov space Bs
p′q′(L,m) := {f ∈ Lp′(Ω) | ∥f∥Bs

p′q′
< L, f ≥ m}.

The next lemma provides the minimax optimal rate for density in the Besov space Bs
p′,q′ .

Lemma N.1 (Theorem 3 of [Niles-Weed and Berthet, 2022]). Let Ω := [−1, 1]dx be the domain
of density q(x1) in Besov space Bs

p′,q′(L,m). Then, for any r, p′, q′ ≥ 1 and s > 0,

inf
P̂

sup
q∈Bs

p′,q′ (L,m)

E
{xi}ni=1

[Wr(P̂ , P )] ≳ n− s+1
dx+2s ,

where {xi}ni=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible
estimators constructed from the data.

Then, we revisit the definition of Wasserstein distance:
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Definition N.3 (2-Wasserstein Distance). Let X and Y be two random variables with marginal
densities µx and µy respectively. We define the 2-Wasserstein distance by:

W2(µx, µy) :=

(
inf

π∈M(µx,µy)

∫
∥x− y∥pdπ(x, y)

) 1
p

,

where M(µx, µy) denotes the set of joint measures π with marginals µx and µy.

We then give the minimax optimal rate in the Hölder density function spaces.

Lemma N.2 (Modified from Theorem 3 of [Niles-Weed and Berthet, 2022]). Consider the task
of estimating a probability distribution P (x1) with density function belonging to the space

P :=
{
q(x1)|q(x1) ∈ Hβ([−1, 1]dx , B), q(x1) ≥ C

}
,

Then, for any r ≥ 1, β > 0 and dx > 2, we have

inf
P̂

sup
q(x1)∈P

E
{xi}ni=1

[Wr(P̂ , P )] ≳ n− β+1
dx+2β ,

where {xi}ni=1 is a set of i.i.d samples drawn from distribution P , and P̂ runs over all possible
estimators constructed from the data.

Proof. Let Ω be some domains. Since Bs
∞,∞(Ω) = Hs(Ω) for any s ∈ R+ \ Z+, Lemma N.1

directly implies Lemma N.2. This completes the proof.

Next, we present the proof of Theorem I.5.

Theorem N.1 (Theorem I.5 Restated: Minimax Optimality of Flow Matching Transformers).
Under the setting of (16d + 18)(β + 1) = dx + 2β, the distribution estimation rate of flow
matching transformers (Theorem I.4) matches the minimax lower bound of Hölder distribution
class in 2-Wasserstein distance up to a log n and Lipschitz constants factors.

Proof of Theorem I.5. By Theorem I.4, we have the distribution estimation rate in 2-Wasserstein
distance under Assumption I.2 and Assumption I.3:

E
{xi}ni=1

[W2(P̂T , PT )] = O(n− 1
16d+18 (log n)10dx+2β+10).

Then, by Lemma N.2, the distribution rates matches the minimax lower bound up to a log n and
Lipschitz constant factors under the setting

(16d+ 18)(β + 1) = dx + 2β.

This completes the proof.
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O Experimental Validation
To provide empirical support for the proposed High-Order Flow Matching (HOFM) framework,
we conduct a series of synthetic experiments designed to evaluate the practical benefits of incorpo-
rating higher-order dynamics. We compare the performance of standard first-order flow matching
(equivalent to our framework with K = 1) against second-order flow matching (K = 2).

O.1 Experimental Setup
Task and Datasets. We evaluate the models on 2D density matching tasks, transitioning a stan-
dard multivariate Gaussian distribution, π0, to three complex target distributions, π1. Following
the experimental setting in [Chen et al., 2025], we use target distributions shaped as: (1) a square,
(2) two intertwined spirals, and (3) three intertwined spirals. These datasets are chosen to test the
models’ ability to learn distributions with sharp corners and high-curvature manifolds.

Evaluation Metric. To quantify the quality of the generated samples, we measure the 2-
Wasserstein distance between the generated distribution and the target distribution. A lower
Wasserstein distance indicates a better match and, therefore, superior performance.

O.2 Results and Discussion
The results of our comparison are summarized in Section O.2. The findings demonstrate the
advantages of using second-order dynamics.

Distribution Sampling Steps First Order (K = 1) Second Order (K = 2)

Square 10 8.51 7.09
50 6.45 6.08

100 5.48 2.82

Two Spirals 10 114.39 74.57
50 73.37 68.47

100 66.15 46.71

Three Spirals 10 192.19 109.93
50 123.53 87.70

100 93.26 68.81

Table 1: Comparison of first-order and second-order flow matching on synthetic 2D datasets.

Across all three target distributions and for every sampling step count (10, 50, and 100), the
second-order model achieves a lower Wasserstein distance than the first-order model. This
suggests that incorporating higher-order information allows the model to learn more accurate and
stable generation paths, which aligns with the motivations discussed in Section 1.

Furthermore, these results highlight a notable improvement in sampling efficiency. For instance,
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in the Three Spirals task, the second-order model with only 50 sampling steps (Wasserstein dis-
tance of 87.70) outperforms the first-order model with 100 steps (93.26). This empirical evidence
supports the theoretical premise that HOFM lead to more efficient sampling strategies (Section 5).
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